Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu

Abstract The ribosome is a complex macromolecular machine that translates the message encoded in the messenger RNA and synthesizes polypeptides by linking the individual amino acids carried by the cognate transfer RNAs (tRNAs). The protein elongation cycle, during which the tRNAs traverse the ribosome in a coordinated manner along a path of more than 100 Å, is facilitated by large-scale rearrangements of the ribosome. These rearrangements go hand in hand with conformational changes of tRNA as well as elongation factors EF-Tu and EF-G – GTPases that catalyze tRNA delivery and translocation, respectively. This review focuses on the structural data related to the dynamics of the ribosomal machinery, which are the basis, in conjunction with existing biochemical, kinetic, and fluorescence resonance energy transfer data, of our knowledge of the decoding and translocation steps of protein elongation.

[1]  Harry F. Noller,et al.  Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements , 2014, Cell.

[2]  A. Spirin The Ribosome as a Conveying Thermal Ratchet Machine , 2009, The Journal of Biological Chemistry.

[3]  Wei Zhang,et al.  GTPase activation of elongation factor EF‐Tu by the ribosome during decoding , 2009, The EMBO journal.

[4]  V. Ramakrishnan,et al.  Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome , 2009, Nature Structural &Molecular Biology.

[5]  Taekjip Ha,et al.  Following movement of the L1 stalk between three functional states in single ribosomes , 2009, Proceedings of the National Academy of Sciences.

[6]  Hani S. Zaher,et al.  Fidelity at the Molecular Level: Lessons from Protein Synthesis , 2009, Cell.

[7]  Klaus Schulten,et al.  Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis , 2009, Proceedings of the National Academy of Sciences.

[8]  Harry F Noller,et al.  Structural dynamics of the ribosome. , 2008, Current opinion in chemical biology.

[9]  Jianlin Lei,et al.  Recognition of aminoacyl-tRNA: a common molecular mechanism revealed by cryo-EM , 2008, The EMBO journal.

[10]  Wolfgang Wintermeyer,et al.  Structure of ratcheted ribosomes with tRNAs in hybrid states , 2008, Proceedings of the National Academy of Sciences.

[11]  Sabine Petry,et al.  Insights into Translational Termination from the Structure of RF2 Bound to the Ribosome , 2008, Science.

[12]  Jianlin Lei,et al.  Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. , 2008, Molecular cell.

[13]  Joseph D. Puglisi,et al.  Irreversible chemical steps control intersubunit dynamics during translation , 2008, Proceedings of the National Academy of Sciences.

[14]  Joachim Frank,et al.  Exploration of parameters in cryo-EM leading to an improved density map of the E. coli ribosome. , 2008, Journal of structural biology.

[15]  H. Noller,et al.  Structural basis for translation termination on the 70S ribosome , 2008, Nature.

[16]  Barry S. Cooperman,et al.  Role of hybrid tRNA-binding states in ribosomal translocation , 2008, Proceedings of the National Academy of Sciences.

[17]  Taekjip Ha,et al.  Spontaneous intersubunit rotation in single ribosomes. , 2008, Molecular cell.

[18]  R. L. Gonzalez,et al.  Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. , 2008, Molecular cell.

[19]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[20]  Magnus Johansson,et al.  Rate and accuracy of bacterial protein synthesis revisited. , 2008, Current opinion in microbiology.

[21]  T. Steitz A structural understanding of the dynamic ribosome machine , 2008, Nature Reviews Molecular Cell Biology.

[22]  T. Steitz,et al.  Cross-crystal averaging reveals that the structure of the peptidyl-transferase center is the same in the 70S ribosome and the 50S subunit , 2008, Proceedings of the National Academy of Sciences.

[23]  R. Green,et al.  Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. , 2007, Journal of molecular biology.

[24]  Joachim Frank,et al.  The process of mRNA–tRNA translocation , 2007, Proceedings of the National Academy of Sciences.

[25]  J. Puglisi,et al.  Thiostrepton inhibition of tRNA delivery to the ribosome. , 2007, RNA.

[26]  Steven Chu,et al.  Fluctuations of transfer RNAs between classical and hybrid states. , 2007, Biophysical journal.

[27]  Harry F Noller,et al.  Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome. , 2007, RNA.

[28]  J. Puglisi,et al.  The role of fluctuations in tRNA selection by the ribosome , 2007, Proceedings of the National Academy of Sciences.

[29]  Zigurts K. Majumdar,et al.  Observation of intersubunit movement of the ribosome in solution using FRET. , 2007, Journal of molecular biology.

[30]  J. Frank,et al.  RF3 Induces Ribosomal Conformational Changes Responsible for Dissociation of Class I Release Factors , 2007, Cell.

[31]  Zigurts K. Majumdar,et al.  The antibiotic viomycin traps the ribosome in an intermediate state of translocation , 2007, Nature Structural &Molecular Biology.

[32]  Malte Beringer,et al.  The ribosomal peptidyl transferase. , 2007, Molecular cell.

[33]  Joachim Frank,et al.  Structures of modified eEF2·80S ribosome complexes reveal the role of GTP hydrolysis in translocation , 2007, The EMBO journal.

[34]  Harry F Noller,et al.  Intersubunit movement is required for ribosomal translocation , 2007, Proceedings of the National Academy of Sciences.

[35]  Daniel N. Wilson,et al.  Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. , 2007, Molecular cell.

[36]  Nathan O'Connor,et al.  Identification of two distinct hybrid state intermediates on the ribosome. , 2007, Molecular cell.

[37]  B. Cooperman,et al.  Kinetically competent intermediates in the translocation step of protein synthesis. , 2007, Molecular cell.

[38]  M. Akke,et al.  The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain. , 2007, Journal of molecular biology.

[39]  Martin Almlöf,et al.  Energetics of codon-anticodon recognition on the small ribosomal subunit. , 2007, Biochemistry.

[40]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[41]  H. Noller,et al.  Deletion of a conserved, central ribosomal intersubunit RNA bridge. , 2006, Molecular cell.

[42]  M. Rodnina,et al.  Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome , 2006, Proceedings of the National Academy of Sciences.

[43]  P. Nissen,et al.  Elongation factor Tu‐targeted antibiotics: Four different structures, two mechanisms of action , 2006, FEBS letters.

[44]  J. Ninio Multiple stages in codon-anticodon recognition: double-trigger mechanisms and geometric constraints. , 2006, Biochimie.

[45]  H. Noller Biochemical characterization of the ribosomal decoding site. , 2006, Biochimie.

[46]  M. Rodnina,et al.  Rapid peptide bond formation on isolated 50S ribosomal subunits , 2006, EMBO reports.

[47]  Eduardo A. Groisman,et al.  An RNA Sensor for Intracellular Mg2+ , 2006, Cell.

[48]  B. Cooperman,et al.  Rapid ribosomal translocation depends on the conserved 18-55 base pair in P-site transfer RNA , 2006, Nature Structural &Molecular Biology.

[49]  Divya Sharma,et al.  The hybrid state of tRNA binding is an authentic translation elongation intermediate , 2006, Nature Structural &Molecular Biology.

[50]  Tina Daviter,et al.  A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. , 2006, Molecular cell.

[51]  T. Martin Schmeing,et al.  An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA , 2005, Nature.

[52]  Thomas A Steitz,et al.  Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. , 2005, Molecular cell.

[53]  H. Ramu,et al.  A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome. , 2005, Molecular cell.

[54]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[55]  A. Schwan,et al.  Exotoxin A–eEF2 complex structure indicates ADP ribosylation by ribosome mimicry , 2005, Nature.

[56]  A. Liljas,et al.  Crystal structure of a mutant elongation factor G trapped with a GTP analogue , 2005, FEBS letters.

[57]  Marina V. Rodnina,et al.  Structural Basis for the Function of the Ribosomal L7/12 Stalk in Factor Binding and GTPase Activation , 2005, Cell.

[58]  V. Ramakrishnan,et al.  First published online as a Review in Advance on February 25, 2005 STRUCTURAL INSIGHTS INTO TRANSLATIONAL , 2022 .

[59]  Joachim Frank,et al.  Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. , 2005, Molecular cell.

[60]  Joachim Frank,et al.  The Cryo-EM Structure of a Translation Initiation Complex from Escherichia coli , 2005, Cell.

[61]  R. Green,et al.  An Active Role for tRNA in Decoding Beyond Codon:Anticodon Pairing , 2005, Science.

[62]  Joachim Frank,et al.  The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer , 2005, FEBS letters.

[63]  J. Nilsson,et al.  Crystal Structure of ADP-ribosylated Ribosomal Translocase from Saccharomyces cerevisiae* , 2004, Journal of Biological Chemistry.

[64]  J. Puglisi,et al.  tRNA selection and kinetic proofreading in translation , 2004, Nature Structural &Molecular Biology.

[65]  Anders Liljas,et al.  Structural aspects of protein synthesis , 2004, Nature Structural Biology.

[66]  R. Jernigan,et al.  Global ribosome motions revealed with elastic network model. , 2004, Journal of structural biology.

[67]  Steven Chu,et al.  tRNA dynamics on the ribosome during translation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Ballesta,et al.  Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation , 2004, The EMBO journal.

[69]  Bruno P. Klaholz,et al.  Visualization of release factor 3 on the ribosome during termination of protein synthesis , 2004, Nature.

[70]  M. Rodnina,et al.  Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. , 2004, Molecular cell.

[71]  Scott M Stagg,et al.  Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy , 2003, Nature Structural Biology.

[72]  M. Rodnina,et al.  Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. , 2003, Journal of molecular biology.

[73]  J. Frank,et al.  Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Joachim Frank,et al.  Locking and Unlocking of Ribosomal Motions , 2003, Cell.

[75]  Måns Ehrenberg,et al.  Peptidyl-tRNA Regulates the GTPase Activity of Translation Factors , 2003, Cell.

[76]  M. S. Chapman,et al.  Study of the Structural Dynamics of the E. coli 70S Ribosome Using Real-Space Refinement , 2003, Cell.

[77]  Wolfgang Wintermeyer,et al.  An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. , 2003, Molecular cell.

[78]  H. Noller,et al.  Catalysis of Ribosomal Translocation by Sparsomycin , 2003, Science.

[79]  Terri Goss Kinzy,et al.  Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase , 2003, Nature Structural Biology.

[80]  J. Frank,et al.  A twisted tRNA intermediate sets the threshold for decoding. , 2003, RNA.

[81]  V. Ramakrishnan,et al.  Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form , 2002, Cell.

[82]  M. Heel,et al.  Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex , 2002, Nature Structural Biology.

[83]  J. Remme,et al.  Functional Importance of the 3′-Terminal Adenosine of tRNA in Ribosomal Translation* , 2002, The Journal of Biological Chemistry.

[84]  Joachim Frank,et al.  Cryo‐EM reveals an active role for aminoacyl‐tRNA in the accommodation process , 2002, The EMBO journal.

[85]  Poul Nissen,et al.  The structures of four macrolide antibiotics bound to the large ribosomal subunit. , 2002, Molecular cell.

[86]  H. Noller,et al.  Translocation of tRNA during protein synthesis , 2002, FEBS letters.

[87]  T. Steitz,et al.  A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits , 2002, Nature Structural Biology.

[88]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[89]  I. Vetter,et al.  The Guanine Nucleotide-Binding Switch in Three Dimensions , 2001, Science.

[90]  S. Joseph,et al.  Identification of molecular interactions between P-site tRNA and the ribosome essential for translocation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Harry F. Noller,et al.  The Path of Messenger RNA through the Ribosome , 2001, Cell.

[92]  R. Hilgenfeld,et al.  Conformational Change of Elongation Factor Tu (EF-Tu) Induced by Antibiotic Binding , 2001, The Journal of Biological Chemistry.

[93]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[94]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[95]  J Frank,et al.  Movement of the decoding region of the 16 S ribosomal RNA accompanies tRNA translocation. , 2000, Journal of molecular biology.

[96]  M. Rodnina,et al.  Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome , 2000, Nature Structural Biology.

[97]  J Frank,et al.  Domain motions of EF-G bound to the 70S ribosome: insights from a hand-shaking between multi-resolution structures. , 2000, Biophysical journal.

[98]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[99]  M. Rodnina,et al.  Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. , 2000, Molecular cell.

[100]  M. Rodnina,et al.  Role of domains 4 and 5 in elongation factor G functions on the ribosome. , 2000, Journal of molecular biology.

[101]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[102]  J. Ballesta,et al.  Three‐dimensional cryo‐electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 Å resolution , 2000, The EMBO journal.

[103]  O. Uhlenbeck,et al.  Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. , 2000, Biochemistry.

[104]  M Kjeldgaard,et al.  Macromolecular mimicry , 2000, The EMBO journal.

[105]  M. Heel,et al.  Large-Scale Movement of Elongation Factor G and Extensive Conformational Change of the Ribosome during Translocation , 2000, Cell.

[106]  R. Green,et al.  Base-pairing between 23S rRNA and tRNA in the ribosomal A site. , 1999, Molecular cell.

[107]  J. Puglisi,et al.  Recognition of the codon-anticodon helix by ribosomal RNA. , 1999, Science.

[108]  T. Pape,et al.  Induced fit in initial selection and proofreading of aminoacyl‐tRNA on the ribosome , 1999, The EMBO journal.

[109]  Joachim Frank,et al.  EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome , 1999, Nature Structural Biology.

[110]  S Thirup,et al.  The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. , 1999, Structure.

[111]  C S Chow,et al.  Thermodynamics of RNA hairpins containing single internal mismatches. , 1999, Nucleic acids research.

[112]  M. R. Parsons,et al.  Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 A resolution. , 1999, Journal of molecular biology.

[113]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[114]  H. Noller,et al.  EF‐G‐catalyzed translocation of anticodon stem–loop analogs of transfer RNA in the ribosome , 1998, The EMBO journal.

[115]  J Frank,et al.  Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[116]  M. Rodnina,et al.  Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome , 1997, Nature.

[117]  J. Puglisi,et al.  Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic , 1996, Science.

[118]  S Thirup,et al.  Helix unwinding in the effector region of elongation factor EF-Tu-GDP. , 1996, Structure.

[119]  Rolf Hilgenfeld,et al.  An α to β conformational switch in EF-Tu , 1996 .

[120]  A. Liljas,et al.  The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. , 1996, Structure.

[121]  T. Pape,et al.  Initial Binding of the Elongation Factor Tu·GTP·Aminoacyl-tRNA Complex Preceding Codon Recognition on the Ribosome (*) , 1996, The Journal of Biological Chemistry.

[122]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[123]  B. Clark,et al.  Site-directed mutagenesis of Arg58 and Asp86 of elongation factor Tu from Escherichia coli: effects on the GTPase reaction and aminoacyl-tRNA binding. , 1995, Protein engineering.

[124]  H. Noller,et al.  A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome , 1995, Nature.

[125]  M. Rodnina,et al.  Codon‐dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. , 1995, The EMBO journal.

[126]  A. Parmeggiani,et al.  Relevance of histidine‐84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: Its substitution by glutamine and alanine , 1995, FEBS letters.

[127]  M. Rodnina,et al.  Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300. , 1995, European journal of biochemistry.

[128]  M. Rodnina,et al.  Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. , 1994, Biochemistry.

[129]  A. Liljas,et al.  Three‐dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. , 1994, The EMBO journal.

[130]  T. Steitz,et al.  The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. , 1994, The EMBO journal.

[131]  M. Yarus,et al.  tRNA structure and ribosomal function. II. Interaction between anticodon helix and other tRNA mutations. , 1994, Journal of molecular biology.

[132]  M Yarus,et al.  tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble. , 1994, Journal of molecular biology.

[133]  J. Nyborg,et al.  The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. , 1993, Structure.

[134]  R. Hilgenfeld,et al.  Crystal structure of active elongation factor Tu reveals major domain rearrangements , 1993, Nature.

[135]  H. Noller,et al.  Unusual resistance of peptidyl transferase to protein extraction procedures. , 1992, Science.

[136]  S. Kirillov,et al.  Puromycin reaction for the A site-bound peptidyl-tRNA. , 1992, FEBS letters.

[137]  A. Parmeggiani,et al.  Substitution of histidine-84 and the GTPase mechanism of elongation factor Tu. , 1991, Biochemistry.

[138]  Frank McCormick,et al.  The GTPase superfamily: conserved structure and molecular mechanism , 1991, Nature.

[139]  V. A. Dell,et al.  Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study. , 1990, Biochemistry.

[140]  W. Wintermeyer,et al.  Binding of the 3′ terminus of tRNA to 23S rRNA in the ribosomal exit site actively promotes translocation. , 1989, The EMBO journal.

[141]  Harry F. Noller,et al.  Intermediate states in the movement of transfer RNA in the ribosome , 1989, Nature.

[142]  H. Noller,et al.  Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites , 1989, Cell.

[143]  M Yarus,et al.  Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome. , 1989, Journal of molecular biology.

[144]  M. Yarus,et al.  Transfer RNA structure and coding specificity. II. A D-arm tertiary interaction that restricts coding range. , 1989, Journal of molecular biology.

[145]  H. Noller,et al.  Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA , 1988, Nature.

[146]  K. Nierhaus,et al.  Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. , 1987, Biochimie.

[147]  Harry F. Noller,et al.  Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes , 1986, Cell.

[148]  D. Turner,et al.  Improved free-energy parameters for predictions of RNA duplex stability. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[149]  D. Turner,et al.  Energetics of internal GU mismatches in ribooligonucleotide helixes. , 1986, Biochemistry.

[150]  H. Rheinberger,et al.  Allosteric interactions between the ribosomal transfer RNA-binding sites A and E. , 1986, The Journal of biological chemistry.

[151]  B. Clark,et al.  Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X‐ray crystallography. , 1985, The EMBO journal.

[152]  C. Kurland,et al.  Codon‐specific missense errors in vivo. , 1983, The EMBO journal.

[153]  M. Ehrenberg,et al.  Is there proofreading during polypeptide synthesis? , 1982, The EMBO journal.

[154]  A. Spirin,et al.  Template‐free ribosomal synthesis of polylysine from lysyl‐tRNA , 1981, FEBS letters.

[155]  Y. Kaziro The role of guanosine 5'-triphosphate in polypeptide chain elongation. , 1978, Biochimica et biophysica acta.

[156]  J. Ninio Kinetic amplification of enzyme discrimination. , 1975, Biochimie.

[157]  A. Spirin,et al.  Translocation in ribosomes by attachment—detachment of elongation factor G without GTP cleavage: Evidence from a column‐bound ribosome system , 1975, FEBS letters.

[158]  J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[159]  C. Ishikawa,et al.  The role of guanosine triphosphate in translocation reaction catalyzed by elongation factor G. , 1974, The Journal of biological chemistry.

[160]  H. Noller,et al.  Functional modification of 16S ribosomal RNA by kethoxal. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[161]  A. Spirin,et al.  Stimulation of "non-enzymic" translocation in ribosomes by p-chloromercuribenzoate. , 1971, FEBS letters.

[162]  T. Ikemura,et al.  Specific inactivation of 16S ribosomal RNA induced by colicin E3 in vivo. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[163]  I. Holland,et al.  Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[164]  S. Pestka Studies on the formation of transfer ribonucleic acid-ribosome complexes. VI. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of soluble transfer factors. , 1969, The Journal of biological chemistry.

[165]  S. Pestka Studies on the formation of trensfer ribonucleic acid-ribosome complexes. V. On the function of a soluble transfer factor in protein synthesis. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[166]  A. Spirin How does the ribosome work? A hypothesis based on the two subunit construction of the ribosome. , 1968, Currents in modern biology.

[167]  M. Bretscher Translocation in Protein Synthesis: A Hybrid Structure Model , 1968, Nature.

[168]  J. L. Barron,et al.  Ribosomal Dynamics: Intrinsic Instability of a Molecular Machine , 2009 .

[169]  R. Batey,et al.  Non-protein coding RNAs , 2009 .

[170]  J. Frank,et al.  Displaying 3D data on RNA secondary structures: coloRNA. , 2007, Journal of structural biology.

[171]  Rachel Green,et al.  Mutational analysis reveals two independent molecular requirements during transfer RNA selection on the ribosome , 2007, Nature Structural &Molecular Biology.

[172]  R. Green,et al.  EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. , 2004, RNA.

[173]  Frank Schluenzen,et al.  Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. , 2003, Molecular cell.

[174]  M. Rodnina,et al.  Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. , 2001, Annual review of biochemistry.

[175]  R. Hilgenfeld Regulatory GTPases. , 1995, Current opinion in structural biology.

[176]  R. Hilgenfeld,et al.  Crystal structure of active elongation factor Tu reveals major domain rearrangements , 1993, Nature.

[177]  R. Thompson,et al.  Proofreading of the codon-anticodon interaction on ribosomes. , 1977, Proceedings of the National Academy of Sciences of the United States of America.