In this paper, the separation of protein mixtures by continuous annular chromatography (CAC) is studied in a preparative-scale apparatus. S-Sepharose, a strong-acid porous cation-exchange resin is used as the separation medium, and mixtures of albumin, hemoglobin and cytochrome c are used as model separation system. Equilibrium and mass-transfer parameters are developed for this system on the basis of fixed-bed chromatograph experiments. A mathematical model is then successfully used in conjunction with these parameters to simulate the performance of the CAC separations. The continuous separation performance of the annular apparatus is found to be essentially the same as the batchwise performance of an equivalent conventional chromatograph, making the unit attractive for preparative and process-scale applications where continuous throughput is desirable.