DYNAMICALLY DRIVEN EVOLUTION OF THE INTERSTELLAR MEDIUM IN M51

Massive star formation occurs in giant molecular clouds (GMCs); an understanding of the evolution of GMCs is a prerequisite to develop theories of star formation and galaxy evolution. We report the highest-fidelity observations of the grand-design spiral galaxy M51 in carbon monoxide (CO) emission, revealing the evolution of GMCs vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (giant molecular associations (GMAs)) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics—their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the interarm region and into the next spiral arm passage.

[1]  N. Scoville,et al.  MOLECULAR GAS EVOLUTION ACROSS A SPIRAL ARM IN M51 , 2010, 1011.3889.

[2]  E. Vázquez-Semadeni,et al.  Molecular Cloud Evolution , 2010, 1009.3962.

[3]  A. Sicilia-Aguilar,et al.  OPTICAL CHARACTERIZATION OF A NEW YOUNG STELLAR POPULATION IN THE SERPENS MOLECULAR CLOUD , 2008, 0810.0829.

[4]  E. Ostriker,et al.  Detection of Dense Molecular Gas in Interarm Spurs in M51 , 2008, 0811.2903.

[5]  L. Testi,et al.  The Star Formation in the L1615/L1616 Cometary Cloud , 2008, 0807.0532.

[6]  T. Sawada,et al.  On-The-Fly Observing System of the Nobeyama 45-m and ASTE 10-m Telescopes , 2007, 0712.1283.

[7]  K. Wada Instabilities of Spiral Shocks. II. A Quasi-Steady State in the Multiphase Inhomogeneous ISM , 2007, 0710.0407.

[8]  R. Jeffries Using rotation rates to probe age spreads in the Orion Nebula Cluster , 2007, 0707.4641.

[9]  B. Elmegreen On the Rapid Collapse and Evolution of Molecular Clouds , 2007, 0707.2252.

[10]  R. Morganti,et al.  The Westerbork SINGS survey - I. Overview and image atlas , 2006, astro-ph/0610114.

[11]  E. Ostriker,et al.  A Hubble Space Telescope Archival Survey of Feathers in Spiral Galaxies , 2006, astro-ph/0606761.

[12]  I. Bonnell,et al.  Spurs and feathering in spiral galaxies , 2006, astro-ph/0602100.

[13]  T. Sawada,et al.  The Elongations and Supersonic Motions of Molecular Clouds , 2005, astro-ph/0510201.

[14]  J. Rathborne,et al.  The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey , 2005, astro-ph/0602160.

[15]  K. Rice,et al.  Protostars and Planets V , 2005 .

[16]  K. Tassis,et al.  Ambipolar-Diffusion Timescale, Star Formation Timescale, and the Ages of Molecular Clouds: Is There a Discrepancy? , 2004, astro-ph/0409089.

[17]  Caltech,et al.  Instabilities of spiral shocks – I. Onset of wiggle instability and its mechanism , 2003, astro-ph/0308203.

[18]  C. Norman,et al.  Gravity-driven Turbulence in Galactic Disks , 2002, astro-ph/0207641.

[19]  L. Blitz,et al.  The BIMA Survey of Nearby Galaxies (BIMA SONG). II. The CO Data , 2002, astro-ph/0304294.

[20]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[21]  R. Allen,et al.  The formation of molecular clouds , 2001, astro-ph/0106420.

[22]  R. Klessen,et al.  Gravitational Collapse in Turbulent Molecular Clouds. II. Magnetohydrodynamical Turbulence , 2000, astro-ph/0009227.

[23]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[24]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[25]  B. Elmegreen Star Formation in a Crossing Time , 1999, astro-ph/9911172.

[26]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[27]  L. Hartmann,et al.  Turbulent Flow-driven Molecular Cloud Formation: A Solution to the Post-T Tauri Problem? , 1999, astro-ph/9907053.

[28]  N. Scoville,et al.  A New High-Resolution CO Map of the Inner 2.′5 of M51. I. Streaming Motions and Spiral Structure , 1999, astro-ph/9903414.

[29]  Jonathan P. Williams,et al.  The Galactic Distribution of OB Associations in Molecular Clouds , 1997 .

[30]  Leo Blitz,et al.  DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .

[31]  R. Rand,et al.  M51: molecular spiral arms, giant molecular associations, and superclouds , 1990 .

[32]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[33]  S. R. Kulkarni,et al.  Star formation in giant molecular associations synchronized by a spiral density wave , 1988, Nature.

[34]  R. Larson Large-Scale Aspects of Star Formation and Galactic Evolution , 1988 .

[35]  Michel Fich,et al.  Galactic and extragalactic star formation , 1988 .

[36]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[37]  N. Scoville,et al.  H 2 in the Galaxy , 1987 .

[38]  N. Scoville,et al.  Giant molecular clouds in the galaxy. II. Characteristics of discrete features , 1985 .

[39]  T. Dame,et al.  Molecular clouds and galactic spiral structure , 1980 .

[40]  L. Blitz,et al.  THE ORIGIN AND LIFETIME OF GIANT MOLECULAR CLOUD COMPLEXES , 1980 .

[41]  N. Scoville,et al.  Collisional growth of giant molecular clouds , 1979 .

[42]  P. Myers A compilation of interstellar gas properties , 1977 .