Inexact FETI‐DP methods

Inexact FETI-DP domain decomposition methods are considered. Preconditioners based on formulations of FETI-DP as a saddle point problem are used which allow for an inexact solution of the coarse problem. A positive definite reformulation of the preconditioned saddle point problem, which also allows for approximate solvers, is considered as well. In the formulation that iterates on the original FETI-DP saddle point system, it is also possible to solve the local Neumann subdomain problems inexactly. Given good approximate solvers for the local and coarse problems, convergence bounds of the same quality as for the standard FETI-DP methods are obtained. Numerical experiments which compare the convergence of the inexact methods with that of standard FETI-DP are shown for 2D and 3D elasticity using GMRES and CG as Krylov space methods. Based on parallel computations, a comparison of one variant of the inexact FETI-DP algorithms and the standard FETI-DP method is carried out and similar parallel performance is achieved. Parallel scalability of the inexact variant is also demonstrated. It is shown that for a very large number of subdomains and a very large coarse problem, the inexact method can be superior. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Olof B. Widlund,et al.  Dual‐primal FETI methods for linear elasticity , 2006 .

[2]  Charbel Farhat,et al.  A family of domain decomposition methods for the massively parallel solution of computational mechanics problems , 2000 .

[3]  Olof B. Widlund,et al.  DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .

[4]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[5]  K. Stüben A review of algebraic multigrid , 2001 .

[6]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[7]  P. Gosselet,et al.  Méthodes de décomposition de domaine et méthodes d'accélération pour les problèmes multichamps en mécanique non-linéaire , 2003 .

[8]  O. Widlund,et al.  On the use of inexact subdomain solvers for BDDC algorithms , 2007 .

[9]  Axel Klawonn,et al.  Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..

[10]  William Gropp,et al.  A High-Performance MPI Implementation on a Shared-Memory Vector Supercomputer , 1997, Parallel Comput..

[11]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[12]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[13]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[14]  Xuemin Tu Three-Level BDDC in Three Dimensions , 2007, SIAM J. Sci. Comput..

[15]  Olof B. Widlund,et al.  Some Computational Results for Dual-Primal FETI Methods for Elliptic Problems in 3D , 2005 .

[16]  Jan Mandel,et al.  On the convergence of a dual-primal substructuring method , 2000, Numerische Mathematik.

[17]  R. Lehoucq,et al.  A Primal-Based Penalty Preconditioner for Elliptic Saddle Point Systems , 2006, SIAM J. Numer. Anal..

[18]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[19]  Robert D. Falgout,et al.  The Design and Implementation of hypre, a Library of Parallel High Performance Preconditioners , 2006 .

[20]  Xuemin Tu,et al.  Three‐level BDDC in two dimensions , 2007 .

[21]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[22]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[23]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[24]  O. Widlund,et al.  FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .

[25]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[26]  Valeria Simoncini,et al.  Block triangular preconditioners for symmetric saddle-point problems , 2004 .

[27]  Olof B. Widlund,et al.  A Domain Decomposition Method with Lagrange Multipliers and Inexact Solvers for Linear Elasticity , 2000, SIAM J. Sci. Comput..

[28]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[29]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[30]  William Gropp,et al.  Sowing Mpich: a Case Study in the Dissemination of a Portable Environment for Parallel Scientific Computing , 1997, Int. J. High Perform. Comput. Appl..

[31]  Olof B. Widlund,et al.  FETI‐DP, BDDC, and block Cholesky methods , 2006 .

[32]  R.D. Falgout,et al.  An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.

[33]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[34]  C. Farhat,et al.  The two-level FETI method for static and dynamic plate problems Part I: An optimal iterative solver for biharmonic systems , 1998 .

[35]  Anthony Skjellum,et al.  A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..

[36]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[37]  C. Farhat,et al.  Optimal convergence properties of the FETI domain decomposition method , 1994 .

[38]  C. Farhat,et al.  The second generation FETI methods and their application to the parallel solution of large-scale linear and geometrically non-linear structural analysis problems , 2000 .

[39]  Axel Klawonn,et al.  A Matrix Description for the Domain Decomposition Methods of the FETI family , 2001 .

[40]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[41]  C. Farhat,et al.  A scalable dual-primal domain decomposition method , 2000, Numer. Linear Algebra Appl..

[42]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[43]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .