Designed materials with the giant magnetocaloric effect near room temperature

Abstract The coupling between structural and magnetic degrees of freedom is crucial for realization of interesting physical phenomena associated with magneto-structural transformations resembling austenite-to-martensite transitions. Despite substantial efforts in design and discovery of materials with strong magnetocaloric effects, a majority of viable candidates are composed of non-earth-abundant and toxic elements, while others involve challenging syntheses and post processing. Guided by advanced density functional theory calculations, we report a new family of compounds, i.e., Mn0.5Fe0.5NiSi1-xAlx [x = 0.045–0.07] exhibiting a giant magnetocaloric effect (MCE) that is tunable near room temperature. Their MCE functionality arises from a distinct magneto-structural transformation between a paramagnetic hexagonal Ni2In-type phase and ferromagnetic orthorhombic TiNiSi-type phase that can be actuated by magnetic field and/or pressure. As the transition is sensitive to external hydrostatic pressure, the same materials should also exhibit a strong barocaloric response in addition to the giant MCE.

[1]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[2]  A. Pędziwiatr,et al.  Crystal and magnetic structure of CoMnGe, CoFeGe, FeMnGe and NiFeGe , 1981 .

[3]  Ekkes Br ck Developments in magnetocaloric refrigeration , 2005 .

[4]  Wei Zhu,et al.  Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. , 2012, Nature communications.

[5]  Johnson,et al.  Modified Broyden's method for accelerating convergence in self-consistent calculations. , 1988, Physical review. B, Condensed matter.

[6]  P. Fournier,et al.  Advanced materials for magnetic cooling: Fundamentals and practical aspects , 2017, 2012.08176.

[7]  F. Qin,et al.  Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction , 2013 .

[8]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[9]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[10]  Yong Li,et al.  Unprecedentedly Wide Curie‐Temperature Windows as Phase‐Transition Design Platform for Tunable Magneto‐Multifunctional Materials , 2015, 1507.05905.

[11]  Sindhunil Roy First order magneto-structural phase transition and associated multi-functional properties in magnetic solids , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  W. Fang,et al.  Large magnetic entropy change and magnetic properties in La (Fe1-xMnx)11.7Si1.3Hy compounds , 2003 .

[13]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[14]  Jun Cui,et al.  (Magneto)caloric refrigeration: is there light at the end of the tunnel? , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Vitalij K. Pecharsky,et al.  Electron correlation effects on the magnetostructural transition and magnetocaloric effect inGd5Si2Ge2 , 2006 .

[16]  Mahmud Tareq Hassan Khan,et al.  Magnetocaloric Properties of Ni2Mn1−xCuxGa , 2006 .

[17]  N. Trung,et al.  Determination of adiabatic temperature change in MnFe(P,Ge) compounds with pulse-field method , 2010 .

[18]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[19]  M. Bibes,et al.  Large reversible caloric effect in FeRh thin films via a dual-stimulus multicaloric cycle , 2016, Nature Communications.

[20]  Sun Ji-rong,et al.  Effect of R substitution on magnetic properties and magnetocaloric effects of La1−xRxFe11.5Si1.5 compounds with R = Ce, Pr and Nd , 2009 .

[21]  Jun Liu,et al.  Realization of magnetostructural coupling by modifying structural transitions in MnNiSi-CoNiGe system with a wide Curie-temperature window , 2016, Scientific Reports.

[22]  A. Pathak,et al.  Large inverse magnetic entropy changes and magnetoresistance in the vicinity of a field-induced martensitic transformation in Ni50−xCoxMn32−yFeyGa18 , 2010 .

[23]  Yongjiang Huang,et al.  Table-like magnetocaloric behavior and enhanced cooling efficiency of a Bi-constituent Gd alloy wire-based composite , 2018, Journal of Alloys and Compounds.

[24]  H. Wada,et al.  Extremely Large Magnetic Entropy Change of MnAs1-xSbx near Room Temperature. , 2002 .

[25]  G. D. de Wijs,et al.  Mixed Magnetism for Refrigeration and Energy Conversion , 2011, 1203.0556.

[26]  M. McHenry,et al.  Overview of Amorphous and Nanocrystalline Magnetocaloric Materials Operating Near Room Temperature , 2012, JOM.

[27]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[28]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[29]  A. Tishin,et al.  The magnetocaloric effect in Fe49Rh51 compound , 1990 .

[30]  R. Fruchart,et al.  Magnetic properties of CoMnSi and CoMnSi0.85Ge0.15 , 1979 .

[31]  J. Sun,et al.  Recent Progress in Exploring Magnetocaloric Materials , 2009, 1006.3415.

[32]  X. Moya,et al.  Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn , 2007, 0707.0360.

[33]  T. Zhao,et al.  Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature , 2015, Scientific Reports.

[34]  K. Gschneidner,et al.  The effect of varying the crystal structure on the magnetism, electronic structure and thermodynamics in the Gd 5 (Si x Ge 1- x ) 4 system near x=0.5 , 2003 .

[35]  K.H.J. Buschow,et al.  Magnetic refrigeration—towards room-temperature applications , 2003 .

[36]  Jirong Sun,et al.  Effect of the introduction of H atoms on magnetic properties and magnetic entropy change in metamagnetic Heusler alloys Ni–Mn–In , 2009 .

[37]  Huai-ying Zhou,et al.  Martensitic transition and magnetocaloric properties in Ni45Mn44−xFexSn11 alloys , 2010 .

[38]  T. Samanta,et al.  Magnetocaloric properties of nanocrystalline Pr0.65(Ca0.6Sr0.4)0.35MnO3 , 2008 .

[39]  K. Gschneidner,et al.  X-ray powder diffractometer for in situ structural studies in magnetic fields from 0 to 35 kOe between 2.2 and 315 K , 2004 .

[40]  F. Qin,et al.  Impact of structural disorder on the magnetic ordering and magnetocaloric response of amorphous Gd-based microwires. , 2014 .

[41]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[42]  N. Trung,et al.  Giant magnetocaloric effects by tailoring the phase transitions , 2010 .

[43]  C. L. Zhang,et al.  Thermal-cycling-dependent magnetostructural transitions in a Ge-free system Mn0.5Fe0.5Ni(Si,Al) , 2014 .

[44]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[45]  A. Szytuła,et al.  Crystal and magnetic structure of NiMnGe , 1976 .

[46]  I. Dubenko,et al.  Giant magnetocaloric effects near room temperature in Mn1 − xCuxCoGe , 2012 .

[47]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[48]  A. Pathak,et al.  Best practices in evaluation of the magnetocaloric effect from bulk magnetization measurements , 2018, Journal of Magnetism and Magnetic Materials.

[49]  J. Sénateur,et al.  Pressure dependence of the magnetic transition temperature of the CoMnGe1-xSix system , 1989 .

[50]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[51]  Duane D. Johnson,et al.  Nudged-elastic band method with two climbing images: finding transition states in complex energy landscapes. , 2014, The Journal of chemical physics.

[52]  L. Mañosa,et al.  Entropy change and magnetocaloric effect in Gd5(SixGe1-x)4 , 2002 .

[53]  F. Hu,et al.  Effects of carbon on magnetic properties and magnetic entropy change of the LaFe11.5Si1.5 compound , 2003 .

[54]  D. Young,et al.  Barocaloric and magnetocaloric effects in (MnNiSi) 1− x (FeCoGe) x , 2018 .

[55]  Hongxian Shen,et al.  Improving mechanical and magnetocaloric responses of amorphous melt-extracted Gd-based microwires via nanocrystallization , 2017 .

[56]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[57]  B. Banerjee On a generalised approach to first and second order magnetic transitions , 1964 .

[58]  Vitalij K. Pecharsky,et al.  High-throughput search for caloric materials: the CaloriCool approach , 2018 .

[59]  Seong-Cho Yu,et al.  Review of the magnetocaloric effect in manganite materials , 2007 .

[60]  A. Pathak,et al.  Manipulating the stability of crystallographic and magnetic sub-lattices: A first-order magnetoelastic transformation in transition metal based Laves phase , 2018, Acta Materialia.

[61]  Nikolai A. Zarkevich,et al.  Reliable thermodynamic estimators for screening caloric materials , 2017, Journal of Alloys and Compounds.

[62]  I. F. Gribanov,et al.  Magnetostrictive and magnetocaloric effects in Mn0.89Cr0.11NiGe , 2013 .

[63]  J. L. Chen,et al.  Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1-xCoGe alloys , 2010, 1003.0489.

[64]  F. Hu,et al.  Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1-xCOx)11.9Si1.1 , 2005 .

[65]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .