Encoding of Yaw in the Presence of Distractor Motion: Studies in a Fly Motion Sensitive Neuron

Motion estimation is crucial for aerial animals such as the fly, which perform fast and complex maneuvers while flying through a 3-D environment. Motion-sensitive neurons in the lobula plate, a part of the visual brain, of the fly have been studied extensively for their specialized role in motion encoding. However, the visual stimuli used in such studies are typically highly simplified, often move in restricted ways, and do not represent the complexities of optic flow generated during actual flight. Here, we use combined rotations about different axes to study how H1, a wide-field motion-sensitive neuron, encodes preferred yaw motion in the presence of stimuli not aligned with its preferred direction. Our approach is an extension of “white noise” methods, providing a framework that is readily adaptable to quantitative studies into the coding of mixed dynamic stimuli in other systems. We find that the presence of a roll or pitch (“distractor”) stimulus reduces information transmitted by H1 about yaw, with the amount of this reduction depending on the variance of the distractor. Spike generation is influenced by features of both yaw and the distractor, where the degree of influence is determined by their relative strengths. Certain distractor features may induce bidirectional responses, which are indicative of an imbalance between global excitation and inhibition resulting from complex optic flow. Further, the response is shaped by the dynamics of the combined stimulus. Our results provide intuition for plausible strategies involved in efficient coding of preferred motion from complex stimuli having multiple motion components.

[1]  J. M. Zanker,et al.  Visual detection of paradoxical motion in flies , 1991, Journal of Comparative Physiology A.

[2]  M R DeWeese,et al.  How to measure the information gained from one symbol. , 1999, Network.

[3]  Holger G. Krapp,et al.  A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons , 1997, Vision Research.

[4]  J. White,et al.  Channel noise in neurons , 2000, Trends in Neurosciences.

[5]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  L. Paninski Convergence Properties of Some Spike-Triggered Analysis Techniques , 2002 .

[7]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[8]  A. Borst,et al.  Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions , 2003, Journal of Comparative Physiology A.

[9]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[10]  M. Egelhaaf,et al.  Neural Processing of Naturalistic Optic Flow , 2001, The Journal of Neuroscience.

[11]  Stefano Panzeri,et al.  The Upward Bias in Measures of Information Derived from Limited Data Samples , 1995, Neural Computation.

[12]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.

[13]  Dora E Angelaki,et al.  Macaque Parieto-Insular Vestibular Cortex: Responses to Self-Motion and Optic Flow , 2010, Journal of Neuroscience.

[14]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[15]  H. Wagner Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) II. Pursuit of targets , 1986 .

[16]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[17]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[18]  J. Victor,et al.  Nature and precision of temporal coding in visual cortex: a metric-space analysis. , 1996, Journal of neurophysiology.

[19]  K. R. Hengstenberg The Number and Structure of Giant Vertical Cells (VS) in the Lobula Plate of the Blowfly , 2022 .

[20]  M Egelhaaf,et al.  Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements , 2006, Journal of Experimental Biology.

[21]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[22]  Hendrik Eckert,et al.  Functional properties of the H1-neurone in the third optic Ganglion of the Blowfly,Phaenicia , 1980, Journal of comparative physiology.

[23]  P. Z. Marmarelis,et al.  Analysis of Physiological Systems: The White-Noise Approach , 2011 .

[24]  W. Bialek,et al.  Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  M. Egelhaaf,et al.  Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths , 2005, Journal of Comparative Physiology A.

[26]  M. Srinivasan,et al.  Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.

[27]  J. P. Lindemann,et al.  Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons—A Model Study , 2011, PloS one.

[28]  R. Hengstenberg,et al.  The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala , 1982, Journal of comparative physiology.

[29]  Ryan J. Prenger,et al.  Nonlinear V1 responses to natural scenes revealed by neural network analysis , 2004, Neural Networks.

[30]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[31]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[32]  Klaus Hausen,et al.  Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[33]  Yong Gu,et al.  Visual Neurons in the Pigeon Brain Encode the Acceleration of Stimulus Motion , 2004, The Journal of Neuroscience.

[34]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[35]  J. Atick,et al.  STATISTICS OF NATURAL TIME-VARYING IMAGES , 1995 .

[36]  S. Laughlin,et al.  Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  V. Hateren,et al.  Processing of natural time series of intensities by the visual system of the blowfly , 1997, Vision Research.

[38]  William Bialek,et al.  Maximally Informative “Stimulus Energies” in the Analysis of Neural Responses to Natural Signals , 2012, PloS one.

[39]  Michael J. Berry,et al.  Synergy from Silence in a Combinatorial Neural Code , 2006, The Journal of Neuroscience.

[40]  A. Saleem,et al.  Bimodal Optomotor Response to Plaids in Blowflies: Mechanisms of Component Selectivity and Evidence for Pattern Selectivity , 2012, The Journal of Neuroscience.

[41]  Robert A. Harris,et al.  Contrast Gain Reduction in Fly Motion Adaptation , 2000, Neuron.

[42]  H. Rodman,et al.  Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT) , 2004, Experimental Brain Research.

[43]  S. B. Laughlin,et al.  Fast and slow photoreceptors — a comparative study of the functional diversity of coding and conductances in the Diptera , 1993, Journal of Comparative Physiology A.

[44]  Lee M. Miller,et al.  Naturalistic Auditory Contrast Improves Spectrotemporal Coding in the Cat Inferior Colliculus , 2003, The Journal of Neuroscience.

[45]  Hateren,et al.  Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics , 1999, The Journal of experimental biology.

[46]  Norbert Boeddeker,et al.  Vision and the organization of behaviour , 2008, Current Biology.

[47]  Feng Qi Han,et al.  Cortical Sensitivity to Visual Features in Natural Scenes , 2005, PLoS biology.

[48]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[49]  Karin Nordström,et al.  Local and global responses of insect motion detectors to the spatial structure of natural scenes. , 2011, Journal of vision.

[50]  R. Hengstenberg,et al.  Binocular contributions to optic flow processing in the fly visual system. , 2001, Journal of neurophysiology.

[51]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[52]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[53]  A. Borst,et al.  Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. P. Lindemann,et al.  Function of a Fly Motion-Sensitive Neuron Matches Eye Movements during Free Flight , 2005, PLoS biology.

[55]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[56]  G D Lewen,et al.  Neural coding of naturalistic motion stimuli , 2001, Network.

[57]  T. S. Collett,et al.  Visual spatial memory in a hoverfly , 2004, Journal of comparative physiology.

[58]  Alexander Borst,et al.  Adaptation and information transmission in fly motion detection. , 2007, Journal of neurophysiology.

[59]  Idan Segev,et al.  Ion Channel Stochasticity May Be Critical in Determining the Reliability and Precision of Spike Timing , 1998, Neural Computation.

[60]  L. Paninski,et al.  Temporal Precision in the Visual Pathway through the Interplay of Excitation and Stimulus- Driven Suppression , 2022 .

[61]  J. Gallant,et al.  Natural Stimulation of the Nonclassical Receptive Field Increases Information Transmission Efficiency in V1 , 2002, The Journal of Neuroscience.

[62]  Michael J. Berry,et al.  Synergy, Redundancy, and Independence in Population Codes , 2003, The Journal of Neuroscience.

[63]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[64]  J. H. Van Hateren,et al.  Directional tuning curves, elementary movement detectors, and the estimation of the direction of visual movement , 1990, Vision Research.

[65]  Stefano Panzeri,et al.  Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.

[66]  J. P. Kalisvaart,et al.  Motion discrimination under uncertainty and ambiguity. , 2011, Journal of vision.

[67]  KochChristof,et al.  Detecting and Estimating Signals in Noisy Cable Structures, I: Neuronal Noise Sources , 1999 .

[68]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[69]  Christof Koch,et al.  Detecting and Estimating Signals in Noisy Cable Structures, I: Neuronal Noise Sources , 1999, Neural Computation.

[70]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[71]  Barbara Blakeslee,et al.  The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[72]  Karin Nordström,et al.  Higher-order motion sensitivity in fly visual circuits , 2012, Proceedings of the National Academy of Sciences.

[73]  H. Krapp,et al.  Robustness of the tuning of fly visual interneurons to rotatory optic flow. , 2003, Journal of neurophysiology.

[74]  J. V. van Hateren,et al.  Function and Coding in the Blowfly H1 Neuron during Naturalistic Optic Flow , 2005, The Journal of Neuroscience.

[75]  Michael B. Reiser,et al.  The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster , 2007, Journal of Experimental Biology.

[76]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[77]  Alexander Borst,et al.  Two-Dimensional Motion Perception in Flies , 1993, Neural Computation.

[78]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[79]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[80]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[81]  J. V. van Hateren,et al.  Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons. , 2006, Journal of neurophysiology.

[82]  W. Bialek,et al.  RELIABILITY AND STATISTICAL EFFICIENCY OF A BLOWFLY MOVEMENT-SENSITIVE NEURON , 1995 .

[83]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[84]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[85]  Pamela Reinagel,et al.  Decoding visual information from a population of retinal ganglion cells. , 1997, Journal of neurophysiology.

[86]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[87]  A. Borst,et al.  Transient and steady-state response properties of movement detectors. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[88]  Christina Kluge,et al.  Data Reduction And Error Analysis For The Physical Sciences , 2016 .

[89]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[90]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[91]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.