Traffic forecast using simulations of large scale networks

In this contribution an approach to traffic forecast using a microsimulator is presented. In order to provide network-wide information about the current traffic state a cellular automaton traffic flow model is combined with measured data. The framework is applied to the freeway network of North Rhine-Westphalia (NRW), where data from about 3,500 inductive loops are available and provided online minute by minute. Technical aspects of the simulation like the network structure are illustrated. Furthermore, heuristics are developed based on the statistical analysis of historical data.

[1]  Dirk Helbing,et al.  Granular and Traffic Flow ’99: Social, Traffic, and Granular Dynamics , 2000 .

[2]  Michael Schreckenberg,et al.  Simulation of traffic in large road networks , 2001, Future Gener. Comput. Syst..

[3]  Ana L. C. Bazzan,et al.  The impact of real-time information in a two-route scenario using agent-based simulation , 2002 .

[4]  Christopher L. Barrett,et al.  Large Scale Traffic Simulations , 1996, VECPAR.

[5]  W. Knospe,et al.  CA Models for Traffic Flow: Comparison with Empirical Single-Vehicle Data , 2000 .

[6]  Moshe Ben-Akiva,et al.  Dynamic network models and driver information systems , 1991 .

[7]  Victor J. Blue,et al.  Toward the design of intelligent traveler information systems , 1998 .

[8]  Felix Huber,et al.  Traffic and Mobility , 1999 .

[9]  Kai Nagel,et al.  LARGE-SCALE TRAFFIC SIMULATIONS FOR TRANSPORTATION PLANNING , 2000 .

[10]  Harilaos N. Koutsopoulos,et al.  A microscopic traffic simulator for evaluation of dynamic traffic management systems , 1996 .

[11]  F. Kluegl,et al.  Decision dynamics in a traffic scenario , 2000 .

[12]  Hubert Rehborn,et al.  Forecasting of Traffic Congestion , 2000 .

[13]  Kai Nagel,et al.  INDIVIDUAL ADAPTATION IN THE PATH-BASED SIMULATION OF THE FREEWAY NETWORK OF NORTHRHINE-WESTFALIA , 1996, adap-org/9705001.

[14]  M. Schreckenberg,et al.  THREE CATEGORIES OF TRAFFIC DATA : HISTORICAL, CURRENT, AND PREDICTIVE , 2000 .

[15]  Hussein Dia,et al.  An object-oriented neural network approach to short-term traffic forecasting , 2001, Eur. J. Oper. Res..

[16]  B Leerkamp Erhebungs- und Hochrechnungsverfahren des Kfz-Verkehrs fuer kommunale Planungsaufgaben , 1999 .

[17]  M Danech-Pajouh,et al.  24 OR 48 HOUR ADVANCE TRAFFIC FORECAST IN URBAN AND PERIURBAN ENVIRONMENTS: THE EXAMPLE OF PARIS , 1997 .

[18]  M Aleksic,et al.  AUTOMATIC TRACING AND FORECASTING OF MOVING TRAFFIC JAMS USING PREDICTABLE FEATURES OF CONGESTED TRAFFIC FLOW. , 2000 .

[19]  Kai Nagel,et al.  Two-lane traffic rules for cellular automata: A systematic approach , 1997, cond-mat/9712196.

[20]  Peter Wagner,et al.  Parallel real-time implementation of large-scale, route-plan-driven traffic simulation , 1996 .

[21]  M. Schreckenberg,et al.  Microscopic Simulation of Urban Traffic Based on Cellular Automata , 1997 .

[22]  Michael Schreckenberg,et al.  A dynamic route guidance system based on real traffic data , 2001, Eur. J. Oper. Res..

[23]  B. Schürmann,et al.  Application of Neural Networks for Predictive and Control Purposes , 2000 .