Simulations of antihydrogen formation

The results of simulations of antihydrogen formation in a Penning trap are reported. The antihydrogen atoms are formed by three-body capture. We find that the arrested nature of the three-body capture in the trap greatly reduces the expected binding energy of the antihydrogen. Typically, the formed antihydrogen has larger velocity along the magnetic field than across the field and a binding energy below ${k}_{B}T$.