Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors.

Ectodysplasin, a member of the tumor necrosis factor family, is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by loss of hair, sweat glands, and teeth. EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that differ only by an insertion of two amino acids. This insertion functions to determine receptor binding specificity, such that EDA-A1 binds only the receptor EDAR, whereas EDA-A2 binds only the related, but distinct, X-linked ectodysplasin-A2 receptor (XEDAR). In situ binding and organ culture studies indicate that EDA-A1 and EDA-A2 are differentially expressed and play a role in epidermal morphogenesis.

[1]  N. Copeland,et al.  TROY, a Newly Identified Member of the Tumor Necrosis Factor Receptor Superfamily, Exhibits a Homology with Edar and Is Expressed in Embryonic Skin and Hair Follicles* , 2000, The Journal of Biological Chemistry.

[2]  A. Shih,et al.  Broad specificity of GDNF family receptors GFRα1 and GFRα2 for GDNF and NTN in neurons and transfected cells , 2000 .

[3]  V. Dixit,et al.  Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI , 2000, Current Biology.

[4]  M. Ultsch,et al.  A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. , 2000, Biochemistry.

[5]  J. Kere,et al.  Ectodysplasin, a protein required for epithelial morphogenesis, is a novel TNF homologue and promotes cell-matrix adhesion , 1999, Mechanisms of Development.

[6]  T. Doetschman,et al.  The TGF-beta2 isoform is both a required and sufficient inducer of murine hair follicle morphogenesis. , 1999, Developmental biology.

[7]  B. Oh,et al.  2.8 A resolution crystal structure of human TRAIL, a cytokine with selective antitumor activity. , 1999, Immunity.

[8]  Paul A. Overbeek,et al.  Involvement of a novel Tnf receptor homologue in hair follicle induction , 1999, Nature Genetics.

[9]  J. Zonana,et al.  Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia , 1999, Nature Genetics.

[10]  J. Kere,et al.  The anhidrotic ectodermal dysplasia gene (EDA) undergoes alternative splicing and encodes ectodysplasin-A with deletion mutations in collagenous repeats. , 1998, Human molecular genetics.

[11]  D. Schlessinger,et al.  The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  N. Brockdorff,et al.  Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain. , 1997, Human molecular genetics.

[13]  D. Schlessinger,et al.  X–linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein , 1996, Nature Genetics.

[14]  W. Wold,et al.  The signal-anchor domain of adenovirus E3-6.7K, a type III integral membrane protein, can direct adenovirus E3-gp19K, a type I integral membrane protein, into the membrane of the endoplasmic reticulum. , 1994, Virology.

[15]  S. Rastan,et al.  High-resolution mapping of the X-linked hypohidrotic ectodermal dysplasia (EDA) locus. , 1992, American journal of human genetics.

[16]  S R Sprang,et al.  The structure of human lymphotoxin (tumor necrosis factor-beta) at 1.9-A resolution. , 1992, The Journal of biological chemistry.

[17]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[18]  P. Leder,et al.  The kit ligand: A cell surface molecule altered in steel mutant fibroblasts , 1990, Cell.

[19]  M. Pinheiro,et al.  Ectodermal dysplasias--some recollections and a classification. , 1988, Birth defects original article series.