Admissibility of Solution Estimators for Stochastic Optimization

We look at stochastic optimization problems through the lens of statistical decision theory. In particular, we address admissibility, in the statistical decision theory sense, of the natural sample average estimator for a stochastic optimization problem (which is also known as the empirical risk minimization (ERM) rule in learning literature). It is well known that for general stochastic optimization problems, the sample average estimator may not be admissible. This is known as Stein's paradox in the statistics literature. We show in this paper that for optimizing stochastic linear functions over compact sets, the sample average estimator is admissible.

[1]  F. Perron,et al.  Improving on the MLE of a bounded normal mean , 2001 .

[2]  W. Strawderman,et al.  On the estimation of a restricted normal mean , 1987 .

[3]  Vishal Gupta,et al.  Data-driven robust optimization , 2013, Math. Program..

[4]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[5]  Carolyn Pillers Dobler,et al.  Mathematical Statistics , 2002 .

[6]  J. George Shanthikumar,et al.  A practical inventory control policy using operational statistics , 2005, Oper. Res. Lett..

[7]  Kjell A. Doksum,et al.  Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition , 2015 .

[8]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[9]  G. Casella,et al.  Estimating a Bounded Normal Mean , 1981 .

[10]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[11]  Alfred O. Hero,et al.  Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.

[12]  Y. Tripathi,et al.  Estimating a restricted normal mean , 2008 .

[13]  C. Eeden,et al.  Bayes and admissibility properties of estimators in truncated parameter spaces , 1991 .

[14]  J. Hartigan Uniform priors on convex sets improve risk , 2004 .

[15]  Gérard Cornuéjols,et al.  From estimation to optimization via shrinkage , 2017, Oper. Res. Lett..

[16]  C. Stein Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .

[17]  Lawrence D. Brown,et al.  SURE Estimates for a Heteroscedastic Hierarchical Model , 2012, Journal of the American Statistical Association.

[18]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[19]  P. Bickel Minimax Estimation of the Mean of a Normal Distribution when the Parameter Space is Restricted , 1981 .

[20]  Ali Karimnezhad Estimating a Bounded Normal Mean Relative to Squared Error Loss Function , 2011 .

[21]  Daniel Kuhn,et al.  From Data to Decisions: Distributionally Robust Optimization is Optimal , 2017, Manag. Sci..

[22]  P. Rusmevichientong,et al.  Small-Data, Large-Scale Linear Optimization with Uncertain Objectives , 2017, Manag. Sci..

[23]  J. George Shanthikumar,et al.  Solving operational statistics via a Bayesian analysis , 2008, Oper. Res. Lett..

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[25]  Daniel Kuhn,et al.  Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations , 2015, Mathematical Programming.

[26]  Éric Marchand,et al.  On Bayes estimators with uniform priors on spheres and their comparative performance with maximum likelihood estimators for estimating bounded multivariate normal means , 2010, J. Multivar. Anal..

[27]  D. Davarnia BAYESIAN SOLUTION ESTIMATORS IN STOCHASTIC OPTIMIZATION , 2017 .

[28]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[29]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[30]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .