Admissibility of Solution Estimators for Stochastic Optimization
暂无分享,去创建一个
Amitabh Basu | Ao Sun | Tu Nguyen | A. Basu | Ao Sun | Tung Nguyen
[1] F. Perron,et al. Improving on the MLE of a bounded normal mean , 2001 .
[2] W. Strawderman,et al. On the estimation of a restricted normal mean , 1987 .
[3] Vishal Gupta,et al. Data-driven robust optimization , 2013, Math. Program..
[4] P. Bickel,et al. Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .
[5] Carolyn Pillers Dobler,et al. Mathematical Statistics , 2002 .
[6] J. George Shanthikumar,et al. A practical inventory control policy using operational statistics , 2005, Oper. Res. Lett..
[7] Kjell A. Doksum,et al. Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition , 2015 .
[8] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[9] G. Casella,et al. Estimating a Bounded Normal Mean , 1981 .
[10] Alexander Shapiro,et al. Lectures on Stochastic Programming: Modeling and Theory , 2009 .
[11] Alfred O. Hero,et al. Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.
[12] Y. Tripathi,et al. Estimating a restricted normal mean , 2008 .
[13] C. Eeden,et al. Bayes and admissibility properties of estimators in truncated parameter spaces , 1991 .
[14] J. Hartigan. Uniform priors on convex sets improve risk , 2004 .
[15] Gérard Cornuéjols,et al. From estimation to optimization via shrinkage , 2017, Oper. Res. Lett..
[16] C. Stein. Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .
[17] Lawrence D. Brown,et al. SURE Estimates for a Heteroscedastic Hierarchical Model , 2012, Journal of the American Statistical Association.
[18] C. Stein,et al. Estimation with Quadratic Loss , 1992 .
[19] P. Bickel. Minimax Estimation of the Mean of a Normal Distribution when the Parameter Space is Restricted , 1981 .
[20] Ali Karimnezhad. Estimating a Bounded Normal Mean Relative to Squared Error Loss Function , 2011 .
[21] Daniel Kuhn,et al. From Data to Decisions: Distributionally Robust Optimization is Optimal , 2017, Manag. Sci..
[22] P. Rusmevichientong,et al. Small-Data, Large-Scale Linear Optimization with Uncertain Objectives , 2017, Manag. Sci..
[23] J. George Shanthikumar,et al. Solving operational statistics via a Bayesian analysis , 2008, Oper. Res. Lett..
[24] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[25] Daniel Kuhn,et al. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations , 2015, Mathematical Programming.
[26] Éric Marchand,et al. On Bayes estimators with uniform priors on spheres and their comparative performance with maximum likelihood estimators for estimating bounded multivariate normal means , 2010, J. Multivar. Anal..
[27] D. Davarnia. BAYESIAN SOLUTION ESTIMATORS IN STOCHASTIC OPTIMIZATION , 2017 .
[28] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[29] Stephen E. Fienberg,et al. Testing Statistical Hypotheses , 2005 .
[30] John R. Birge,et al. Introduction to Stochastic Programming , 1997 .