A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome

[1]  R. Lightowlers,et al.  Hungry Codons Promote Frameshifting in Human Mitochondrial Ribosomes , 2010, Science.

[2]  L. Spremulli,et al.  Unconventional decoding of the AUA codon as methionine by mitochondrial tRNAMet with the anticodon f5CAU as revealed with a mitochondrial in vitro translation system , 2009, Nucleic acids research.

[3]  M. Pekalski,et al.  The human mitochondrial ribosome recycling factor is essential for cell viability , 2008, Nucleic acids research.

[4]  H. Noller,et al.  Structural basis for translation termination on the 70S ribosome , 2008, Nature.

[5]  U. Varshney,et al.  Recycling of ribosomal complexes stalled at the step of elongation in Escherichia coli. , 2008, Journal of molecular biology.

[6]  Manfred J. Sippl,et al.  A note on difficult structure alignment problems , 2008, Bioinform..

[7]  W. Tate,et al.  mtRF1a Is a Human Mitochondrial Translation Release Factor Decoding the Major Termination Codons UAA and UAG , 2007, Molecular cell.

[8]  Peter V. Konarev,et al.  Release Factors 2 from Escherichia coli and Thermus thermophilus: structural, spectroscopic and microcalorimetric studies , 2007, Nucleic acids research.

[9]  U. Varshney,et al.  Peptidyl-tRNA hydrolase and its critical role in protein biosynthesis. , 2006, Microbiology.

[10]  T. Martin Schmeing,et al.  An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA , 2005, Nature.

[11]  E. Rugarli,et al.  The m-AAA Protease Defective in Hereditary Spastic Paraplegia Controls Ribosome Assembly in Mitochondria , 2005, Cell.

[12]  M. Mann,et al.  Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein*S , 2005, Molecular & Cellular Proteomics.

[13]  K. Kelnar,et al.  High-throughput RNAi screening in vitro: from cell lines to primary cells. , 2005, RNA.

[14]  D. B. Weatherly,et al.  A Heuristic Method for Assigning a False-discovery Rate for Protein Identifications from Mascot Database Search Results * , 2005, Molecular & Cellular Proteomics.

[15]  T. Fox,et al.  Alteration of a Novel Dispensable Mitochondrial Ribosomal Small-Subunit Protein, Rsm28p, Allows Translation of Defective COX2 mRNAs , 2005, Eukaryotic Cell.

[16]  Sung-Hou Kim,et al.  Structural analyses of peptide release factor 1 from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosome. , 2004, Journal of molecular biology.

[17]  I. Stansfield,et al.  Termination of protein synthesis , 1994, Molecular Biology Reports.

[18]  L. Spremulli,et al.  Initiation and elongation factors in mammalian mitochondrial protein biosynthesis. , 2004, Progress in nucleic acid research and molecular biology.

[19]  R. Agrawal,et al.  Structure of the Mammalian Mitochondrial Ribosome Reveals an Expanded Functional Role for Its Component Proteins , 2003, Cell.

[20]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[21]  浅沼 広子,et al.  High-Throughput な迅速凍結標本の作製 , 2002 .

[22]  T. W. O'brien Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. , 2002, Gene.

[23]  L. Spremulli,et al.  The Large Subunit of the Mammalian Mitochondrial Ribosome , 2001, The Journal of Biological Chemistry.

[24]  T Yasukawa,et al.  Wobble modification defect in tRNA disturbs codon–anticodon interaction in a mitochondrial disease , 2001, The EMBO journal.

[25]  K Watanabe,et al.  Proteomic Analysis of the Mammalian Mitochondrial Ribosome , 2001, The Journal of Biological Chemistry.

[26]  Tsutomu Suzuki,et al.  Proteomic Analysis of the Mammalian Mitochondrial Ribosome IDENTIFICATION OF PROTEIN COMPONENTS IN THE 28 S SMALL SUBUNIT* , 2001 .

[27]  M. Uno,et al.  A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA , 2000, Nature.

[28]  Masao Ito,et al.  Neurobiology: Internal model visualized , 2000, Nature.

[29]  V. Blinov,et al.  Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. , 1999, RNA.

[30]  R. Sauer,et al.  Role of a Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA , 1996, Science.

[31]  A. Shevchenko,et al.  Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry , 1996, Nature.

[32]  A. Chomyn In vivo labeling and analysis of human mitochondrial translation products. , 1996, Methods in enzymology.

[33]  T. Preiss,et al.  Inhibition of mitochondrial protein synthesis promotes increased stability of nuclear-encoded respiratory gene transcripts. , 1994, The Journal of biological chemistry.

[34]  A. Beaudet,et al.  Hydrolysis of fMet-tRNA by peptidyl transferase. , 1971, Proceedings of the National Academy of Sciences of the United States of America.