Adaptive Evolution Targets a piRNA Precursor Transcription Network

[1]  W. Theurkauf,et al.  Rapid evolution and conserved function of the piRNA pathway , 2018, Royal Society Open Biology.

[2]  Z. Weng,et al.  Co-dependent Assembly of Drosophila piRNA Precursor Complexes and piRNA Cluster Heterochromatin. , 2018, Cell reports.

[3]  Z. Weng,et al.  Maelstrom Represses Canonical Polymerase II Transcription within Bi-Directional piRNA Clusters in Drosophila melanogaster , 2018, bioRxiv.

[4]  Jinbiao Ma,et al.  Structural insights into Rhino‐Deadlock complex for germline piRNA cluster specification , 2018, EMBO reports.

[5]  Z. Weng,et al.  Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers , 2018, BMC Genomics.

[6]  Josefa González,et al.  Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response. , 2017, Trends in genetics : TIG.

[7]  E. Betrán,et al.  Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. , 2017, Trends in genetics : TIG.

[8]  Z. Weng,et al.  Adaptive Evolution Leads to Cross-Species Incompatibility in the piRNA Transposon Silencing Machinery. , 2017, Developmental cell.

[9]  J. Brennecke,et al.  A heterochromatin-dependent transcription machinery drives piRNA expression , 2017, Nature.

[10]  S. Grossman,et al.  CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors , 2017, Cancer biology & therapy.

[11]  C. Feschotte,et al.  Regulatory activities of transposable elements: from conflicts to benefits , 2016, Nature Reviews Genetics.

[12]  J. Blumenstiel,et al.  What Drives Positive Selection in the Drosophila piRNA Machinery? The Genomic Autoimmunity Hypothesis , 2016, The Yale journal of biology and medicine.

[13]  A. Thorsell,et al.  Stress-induced transposon reactivation: a mediator or an estimator of allostatic load? , 2016, Environmental epigenetics.

[14]  D. Patel,et al.  Cutoff Suppresses RNA Polymerase II Termination to Ensure Expression of piRNA Precursors. , 2016, Molecular cell.

[15]  Hu Li,et al.  Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity. , 2016, Cell reports.

[16]  M. A. Biscotti,et al.  Transposons, Genome Size, and Evolutionary Insights in Animals , 2016, Cytogenetic and Genome Research.

[17]  I. Koturbash,et al.  Response of transposable elements to environmental stressors. , 2015, Mutation research. Reviews in mutation research.

[18]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[19]  Jinbiao Ma,et al.  Structural insights into Rhino-mediated germline piRNA cluster formation , 2015, Cell Research.

[20]  Evgeniya N Andreyeva,et al.  The Release 6 reference sequence of the Drosophila melanogaster genome , 2015, Genome research.

[21]  Trisha R. Stankiewicz,et al.  C-terminal binding proteins: central players in development and disease , 2014, Biomolecular concepts.

[22]  E. Miska,et al.  piRNAs: from biogenesis to function , 2014, Development.

[23]  Selvam Ayarpadikannan,et al.  The Impact of Transposable Elements in Genome Evolution and Genetic Instability and Their Implications in Various Diseases , 2014, Genomics & informatics.

[24]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[25]  R. Sachidanandam,et al.  Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing , 2014, Genes & development.

[26]  Fabio Mohn,et al.  The Rhino-Deadlock-Cutoff Complex Licenses Noncanonical Transcription of Dual-Strand piRNA Clusters in Drosophila , 2014, Cell.

[27]  Z. Weng,et al.  The HP1 Homolog Rhino Anchors a Nuclear Complex that Suppresses piRNA Precursor Splicing , 2014, Cell.

[28]  L. Fanti,et al.  Transposons, environmental changes, and heritable induced phenotypic variability , 2014, Chromosoma.

[29]  Zhiping Weng,et al.  TEMP: a computational method for analyzing transposable element polymorphism in populations , 2014, Nucleic acids research.

[30]  A. Wong,et al.  RECURRENT AND RECENT SELECTIVE SWEEPS IN THE piRNA PATHWAY , 2013, Evolution; international journal of organic evolution.

[31]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[32]  Z. Weng,et al.  Strand-specific libraries for high throughput RNA sequencing (RNA-Seq) prepared without poly(A) selection , 2012, Silence.

[33]  C. Mello,et al.  CapSeq and CIP-TAP Identify Pol II Start Sites and Reveal Capped Small RNAs as C. elegans piRNA Precursors , 2012, Cell.

[34]  C. Langley,et al.  Long-Term and Short-Term Evolutionary Impacts of Transposable Elements on Drosophila , 2012, Genetics.

[35]  M. Daugherty,et al.  Rules of engagement: molecular insights from host-virus arms races. , 2012, Annual review of genetics.

[36]  Zhiping Weng,et al.  UAP56 Couples piRNA Clusters to the Perinuclear Transposon Silencing Machinery , 2012, Cell.

[37]  D. Barbash,et al.  Drosophila Interspecific Hybrids Phenocopy piRNA-Pathway Mutants , 2012, PLoS biology.

[38]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[39]  Zhiping Weng,et al.  Adaptation to P Element Transposon Invasion in Drosophila melanogaster , 2011, Cell.

[40]  Mona Singh,et al.  The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline , 2011, The EMBO journal.

[41]  Constance J Jeffery,et al.  Proteins with neomorphic moonlighting functions in disease , 2011, IUBMB life.

[42]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[43]  M. Crossley,et al.  C-terminal binding protein: A metabolic sensor implicated in regulating adipogenesis. , 2011, The international journal of biochemistry & cell biology.

[44]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[45]  E. Nestler,et al.  Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens , 2011, Proceedings of the National Academy of Sciences.

[46]  D. Barbash Anecdotal , Historical and Critical Commentaries on Genetics Ninety Years of Drosophila melanogaster Hybrids , 2010 .

[47]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[48]  Nels C. Elde,et al.  The evolutionary conundrum of pathogen mimicry , 2009, Nature Reviews Microbiology.

[49]  Z. Weng,et al.  The Drosophila HP1 Homolog Rhino Is Required for Transposon Silencing and piRNA Production by Dual-Strand Clusters , 2009, Cell.

[50]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[51]  Z. Weng,et al.  Collapse of Germline piRNAs in the Absence of Argonaute3 Reveals Somatic piRNAs in Flies , 2009, Cell.

[52]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[53]  P. Zamore,et al.  Small silencing RNAs: an expanding universe , 2009, Nature Reviews Genetics.

[54]  E. Joyce,et al.  Cytological analysis of meiosis in fixed Drosophila ovaries. , 2009, Methods in molecular biology.

[55]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[56]  S. Keleş,et al.  Transcription of histone gene cluster by differential core-promoter factors. , 2007, Genes & development.

[57]  D. Arnosti,et al.  Role of NAD binding and catalytic residues in the C‐terminal binding protein corepressor , 2007, FEBS letters.

[58]  T. Schüpbach,et al.  cutoff and aubergine Mutations Result in Retrotransposon Upregulation and Checkpoint Activation in Drosophila , 2007, Current Biology.

[59]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[60]  P. Deininger,et al.  Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. , 2007, Mutation research.

[61]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[62]  G. Chinnadurai Transcriptional regulation by C-terminal binding proteins. , 2007, The international journal of biochemistry & cell biology.

[63]  W. Theurkauf,et al.  Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. , 2007, Developmental cell.

[64]  Michael Ashburner,et al.  Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome , 2006, Genome Biology.

[65]  Christian Biémont,et al.  Genetics: Junk DNA as an evolutionary force , 2006, Nature.

[66]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[67]  S. Henikoff,et al.  Positive Selection Drives the Evolution of rhino, a Member of the Heterochromatin Protein 1 Family in Drosophila , 2005, PLoS genetics.

[68]  M. Asaoka,et al.  Germline stem cells in the Drosophila ovary descend from pole cells in the anterior region of the embryonic gonad , 2004, Development.

[69]  R. Goodman,et al.  Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  G. Chinnadurai CtBP family proteins: more than transcriptional corepressors. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[71]  E. Myers,et al.  Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence , 2002, Genome Biology.

[72]  G. Chinnadurai,et al.  CtBP, an unconventional transcriptional corepressor in development and oncogenesis. , 2002, Molecular cell.

[73]  R. Tjian,et al.  TATA box-binding protein (TBP)-related factor 2 (TRF2), a third member of the TBP family. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Parkhurst,et al.  Drosophila CtBP: a Hairy‐interacting protein required for embryonic segmentation and Hairy‐mediated transcriptional repression , 1998, The EMBO journal.

[75]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[76]  A. Spradling,et al.  A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. , 1997, Development.

[77]  J. M. Boyd,et al.  Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[78]  N. Goldman,et al.  A codon-based model of nucleotide substitution for protein-coding DNA sequences. , 1994, Molecular biology and evolution.

[79]  J. M. Boyd,et al.  A region in the C‐terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24‐ras mediated transformation, tumorigenesis and metastasis. , 1993, The EMBO journal.

[80]  E. Wieschaus,et al.  Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. , 1989, Genetics.

[81]  R. Donnelly,et al.  DNA sequence adjacent to and specific for the 1.672 g/cm3 satellite DNA in the Drosophila genome. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[82]  A. Sturtevant Genetic Studies on DROSOPHILA SIMULANS. I. Introduction. Hybrids with DROSOPHILA MELANOGASTER. , 1920, Genetics.

[83]  A. Sturtevant A New Species Closely Resembling Drosophila Melanogaster , 1919 .