Symbolic and Parametric Model Checking of Discrete-Time Markov Chains

We present a language-theoretic approach to symbolic model checking of PCTL over discrete-time Markov chains. The probability with which a path formula is satisfied is represented by a regular expression. A recursive evaluation of the regular expression yields an exact rational value when transition probabilities are rational, and rational functions when some probabilities are left unspecified as parameters of the system. This allows for parametric model checking by evaluating the regular expression for different parameter values, for instance, to study the influence of a lossy channel in the overall reliability of a randomized protocol.

[1]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[2]  Henrik Ejersbo Jensen,et al.  Reachability Analysis of Probabilistic Systems by Successive Refinements , 2001, PAPM-PROBMIV.

[3]  Joseph F. Traub,et al.  Algorithms and Complexity: New Directions and Recent Results , 1976 .

[4]  Susan H. Rodger,et al.  Using JFLAP to interact with theorems in automata theory , 1999, SIGCSE '99.

[5]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[6]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.

[7]  Andrew Chi-Chih Yao,et al.  The complexity of nonuniform random number generation , 1976 .

[8]  Ramon Puigjaner,et al.  Computer Performance Evaluation , 2000, Lecture Notes in Computer Science.

[9]  Kim G. Larsen,et al.  Reduction and Refinement Strategies for Probabilistic Analysis , 2002, PAPM-PROBMIV.

[10]  M. Gordon HOL: A Proof Generating System for Higher-Order Logic , 1988 .

[11]  Joe Hurd,et al.  Formal verification of probabilistic algorithms , 2003 .

[12]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[13]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[14]  Marta Z. Kwiatkowska,et al.  PRISM: Probabilistic Symbolic Model Checker , 2002, Computer Performance Evaluation / TOOLS.

[15]  Holger Hermanns,et al.  Process Algebra and Probabilistic Methods: Performance Modeling and Verification , 2002, Lecture Notes in Computer Science.

[16]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[17]  Frits W. Vaandrager,et al.  Cost-optimization of the IPv4 zeroconf protocol , 2003, 2003 International Conference on Dependable Systems and Networks, 2003. Proceedings..

[18]  Adnan Aziz,et al.  It Usually Works: The Temporal Logic of Stochastic Systems , 1995, CAV.

[19]  Jan A. Bergstra,et al.  Process Algebra with Recursive Operations , 2001, Handbook of Process Algebra.

[20]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[21]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[22]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[23]  Jan A. Bergstra,et al.  Process Algebra with Iteration and Nesting , 1994, Comput. J..