Recapitulation of patient-specific 3D chromatin conformation using machine learning

[1]  Ekta Khurana,et al.  Discovery of novel therapeutic targets in cancer using patient-specific gene regulatory networks , 2022, bioRxiv.

[2]  M. Berger,et al.  Chromatin accessibility profiles of castration-resistant prostate cancers reveal novel subtypes and therapeutic vulnerabilities , 2020, bioRxiv.

[3]  Lavanya Ponnusamy,et al.  MELK/MPK38 in cancer: from mechanistic aspects to therapeutic strategies. , 2020, Drug discovery today.

[4]  J. Nadeau,et al.  Apobec1 complementation factor overexpression promotes hepatic steatosis, fibrosis, and hepatocellular cancer. , 2020, The Journal of clinical investigation.

[5]  Judith B. Zaugg,et al.  Landscape of cohesin-mediated chromatin loops in the human genome , 2020, Nature.

[6]  Michael J. Purcaro,et al.  Expanded encyclopaedias of DNA elements in the human and mouse genomes , 2020, Nature.

[7]  A. Sali,et al.  Enhancer Reprogramming within Pre-existing Topologically Associated Domains Promotes TGF-β-Induced EMT and Cancer Metastasis. , 2020, Molecular therapy : the journal of the American Society of Gene Therapy.

[8]  D. Xie,et al.  Double Agent: SPDEF Gene with Both Oncogenic and Tumor-Suppressor Functions in Breast Cancer , 2020, Cancer management and research.

[9]  L. Graves,et al.  Enigmatic MELK: The controversy surrounding its complex role in cancer , 2020, The Journal of Biological Chemistry.

[10]  Jun Yu,et al.  Analyses of non-coding somatic drivers in 2,658 cancer whole genomes , 2020, Nature.

[11]  Cathryn M. Gould,et al.  Epigenetic reprogramming at estrogen-receptor binding sites alters 3D chromatin landscape in endocrine-resistant breast cancer , 2020, Nature Communications.

[12]  Giovanni Parmigiani,et al.  ComBat-seq: batch effect adjustment for RNA-seq count data , 2020, bioRxiv.

[13]  V. Sexl,et al.  STAT5A and STAT5B—Twins with Different Personalities in Hematopoiesis and Leukemia , 2019, Cancers.

[14]  Neva C. Durand,et al.  Activity-by-Contact model of enhancer-promoter regulation from thousands of CRISPR perturbations , 2019, Nature Genetics.

[15]  Bianca J. Diaz,et al.  Identification of Cancer Drivers at CTCF Insulators in 1,962 Whole Genomes. , 2019, Cell systems.

[16]  Kornel Labun,et al.  CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing , 2019, Nucleic Acids Res..

[17]  C. Blanpain,et al.  EMT Transition States during Tumor Progression and Metastasis. , 2019, Trends in cell biology.

[18]  G. Sethi,et al.  Signal Transducer and Activator of Transcription (STATs) Proteins in Cancer and Inflammation: Functions and Therapeutic Implication , 2019, Front. Oncol..

[19]  Mauro A. A. Castro,et al.  The chromatin accessibility landscape of primary human cancers , 2018, Science.

[20]  Ho Lam Chan,et al.  Polycomb complexes associate with enhancers and promote oncogenic transcriptional programs in cancer through multiple mechanisms , 2018, Nature Communications.

[21]  Mark Gerstein,et al.  A cross-organism framework for supervised enhancer prediction with epigenetic pattern recognition and targeted validation , 2018, bioRxiv.

[22]  Karen E Gascoigne,et al.  Enhancer Activity Requires CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation. , 2018, Cell reports.

[23]  Howard Y. Chang,et al.  Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element , 2018, Cell.

[24]  Peter W. Laird,et al.  Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer , 2018, Cell.

[25]  X. Liu,et al.  The prognostic value of CYP2C subfamily genes in hepatocellular carcinoma , 2018, Cancer medicine.

[26]  Tyler H. Garvin,et al.  Enhancer Redundancy Allows for Phenotypic Robustness in Mammalian Development , 2017, Nature.

[27]  Kevin Y. Yip,et al.  Reconstruction of enhancer–target networks in 935 samples of human primary cells, tissues and cell lines , 2017, Nature Genetics.

[28]  Nicholas A. Sinnott-Armstrong,et al.  An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues , 2017, Nature Methods.

[29]  C. Lindskog,et al.  A pathology atlas of the human cancer transcriptome , 2017, Science.

[30]  Jiaoti Huang,et al.  Loss of SPDEF and gain of TGFBI activity after androgen deprivation therapy promote EMT and bone metastasis of prostate cancer , 2017, Science Signaling.

[31]  Per Stenberg,et al.  Genome contact map explorer: a platform for the comparison, interactive visualization and analysis of genome contact maps , 2017, Nucleic acids research.

[32]  Howard Y. Chang,et al.  Chromatin Accessibility Landscape of Cutaneous T Cell Lymphoma and Dynamic Response to HDAC Inhibitors. , 2017, Cancer cell.

[33]  A. Pombo,et al.  Keep Them Close: PRC2 Poises Enhancer-Promoter Interactions at Anterior Neuronal Genes. , 2017, Cell stem cell.

[34]  F. Grosveld,et al.  PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. , 2017, Cell stem cell.

[35]  M. Rubin,et al.  Non-coding genetic variation in cancer. , 2017, Current opinion in systems biology.

[36]  Jonathan M. Cairns,et al.  Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters , 2016, Cell.

[37]  Sharon R Grossman,et al.  Systematic mapping of functional enhancer–promoter connections with CRISPR interference , 2016, Science.

[38]  Allison P. Heath,et al.  Toward a Shared Vision for Cancer Genomic Data. , 2016, The New England journal of medicine.

[39]  Nicholas A. Sinnott-Armstrong,et al.  Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer , 2016, Nature Genetics.

[40]  C. Allis,et al.  The molecular hallmarks of epigenetic control , 2016, Nature Reviews Genetics.

[41]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[42]  Wei Wang,et al.  Constructing 3D interaction maps from 1D epigenomes , 2016, Nature Communications.

[43]  M. Gerstein,et al.  Role of non-coding sequence variants in cancer , 2016, Nature Reviews Genetics.

[44]  Dariusz M Plewczynski,et al.  CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription , 2015, Cell.

[45]  Jean-Philippe Vert,et al.  HiC-Pro: an optimized and flexible pipeline for Hi-C data processing , 2015, Genome Biology.

[46]  Henry W. Long,et al.  Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer. , 2015, Cell reports.

[47]  M. Bissell,et al.  Modelling breast cancer requires identification and correction of a critical cell lineage-dependent transduction bias , 2015, Nature Communications.

[48]  H. Bussemaker,et al.  In search of the determinants of enhancer-promoter interaction specificity. , 2014, Trends in cell biology.

[49]  Michael Q. Zhang,et al.  Genome-wide map of regulatory interactions in the human genome , 2014, Genome research.

[50]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[51]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[52]  Kristian Helin,et al.  Chromatin repressive complexes in stem cells, development, and cancer. , 2014, Cell stem cell.

[53]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[54]  E. Zeggini,et al.  Functional annotation of non-coding sequence variants , 2014, Nature Methods.

[55]  Tatsunori B. Hashimoto,et al.  Discovery of non-directional and directional pioneer transcription factors by modeling DNase profile magnitude and shape , 2014, Nature Biotechnology.

[56]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[57]  Yan Li,et al.  A high-resolution map of three-dimensional chromatin interactome in human cells , 2013, Nature.

[58]  E. Keller,et al.  SPDEF: a molecular switch for E-cadherin expression that promotes prostate cancer metastasis. , 2013, Asian journal of andrology.

[59]  M. Washington,et al.  SPDEF functions as a colorectal tumor suppressor by inhibiting β-catenin activity. , 2013, Gastroenterology.

[60]  J. Wysocka,et al.  Modification of enhancer chromatin: what, how, and why? , 2013, Molecular cell.

[61]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[62]  Shane J. Neph,et al.  An expansive human regulatory lexicon encoded in transcription factor footprints , 2012, Nature.

[63]  Günter P. Wagner,et al.  Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples , 2012, Theory in Biosciences.

[64]  Joshua J. Steffan,et al.  The Transcription Factor SPDEF Suppresses Prostate Tumor Metastasis* , 2012, The Journal of Biological Chemistry.

[65]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[66]  P. Scacheri,et al.  Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. , 2011, Genome research.

[67]  E. Birney,et al.  High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. , 2011, Genome research.

[68]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[69]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[70]  J. Ragoussis,et al.  A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers , 2010, PLoS biology.

[71]  D. Reinberg,et al.  Chromatin structure and the inheritance of epigenetic information , 2010, Nature Reviews Genetics.

[72]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[73]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[74]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[75]  J. Carroll,et al.  Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state , 2007, Nature Reviews Cancer.

[76]  Eric S. Lander,et al.  Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse , 2005, Cell.

[77]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[78]  Shizuo Akira,et al.  Functional Roles of STAT Family Proteins: Lessons from Knockout Mice , 1999, Stem cells.

[79]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[80]  O. Lingjaerde,et al.  ESR1 gene amplification in breast cancer: a common phenomenon? , 2008, Nature Genetics.