Voronoi diagrams of polygons: A framework for shape representation
暂无分享,去创建一个
[1] D. T. Lee,et al. Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..
[2] M. Brady,et al. Smoothed Local Symmetries and Their Implementation , 1984 .
[3] C. J. Hilditch,et al. Linear Skeletons From Square Cupboards , 1969 .
[4] Ching Y. Suen,et al. Structural classification and relaxation matching of totally unconstrained handwritten zip-code numbers , 1988, Pattern Recognit..
[5] L. Nackman,et al. Automatic mesh generation using the symmetric axis transformation of polygonal domains , 1992, Proc. IEEE.
[6] Gérard G. Medioni,et al. Hierarchical Decomposition and Axial Shape Description , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[7] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[8] Gabriella Sanniti di Baja,et al. A Width-Independent Fast Thinning Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[9] Theodosios Pavlidis. An asynchronous thinning algorithm , 1982, Comput. Graph. Image Process..
[10] E. R. Davies,et al. Thinning algorithms: A critique and a new methodology , 1981, Pattern Recognit..
[11] Ugo Montanari,et al. A Method for Obtaining Skeletons Using a Quasi-Euclidean Distance , 1968, J. ACM.
[12] Stephen M. Pizer,et al. Hierarchical Shape Description Via the Multiresolution Symmetric Axis Transform , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] Victor J. Milenkovic,et al. Robust Construction of the Voronoi Diagram of a Polyhedron , 1993, CCCG.
[14] Luc Vincent,et al. Euclidean skeletons and conditional bisectors , 1992, Other Conferences.
[15] David G. Kirkpatrick,et al. Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[16] Gabriella Sanniti di Baja,et al. Skeletonizing the distance transform on the hexagonal grid , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.
[17] Vijay Srinivasan,et al. Voronoi Diagram for Multiply-Connected Polygonal Domains I: Algorithm , 1987, IBM J. Res. Dev..
[18] Andrew F. Laine,et al. Handprinted character recognition by voronoi skeletons , 1994 .
[19] Ugo Montanari,et al. Continuous Skeletons from Digitized Images , 1969, JACM.
[20] HARRY BLUM,et al. Shape description using weighted symmetric axis features , 1978, Pattern Recognit..
[21] Fernand Meyer. Digital Euclidean skeletons , 1990, Other Conferences.
[22] D Marr,et al. Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[23] P. Danielsson. Euclidean distance mapping , 1980 .
[24] V. Ralph Algazi,et al. Continuous skeleton computation by Voronoi diagram , 1991, CVGIP Image Underst..
[25] D. T. Lee,et al. Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[26] Frederic Fol Leymarie,et al. Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[27] Siavash N. Meshkat,et al. Voronoi Diagram for Multiply-Connected Polygonal Domains II: Implementation and Application , 1987, IBM J. Res. Dev..
[28] Michael Leyton,et al. Symmetry-curvature duality , 1987, Comput. Vis. Graph. Image Process..
[29] Frederic Fol Leymarie,et al. Fast raster scan distance propagation on the discrete rectangular lattice , 1992, CVGIP Image Underst..
[30] Markus Ilg,et al. Voronoi skeletons: theory and applications , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[31] Martin D. Levine,et al. Multiple Resolution Skeletons , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[32] Ching Y. Suen,et al. Computer recognition of unconstrained handwritten numerals , 1992, Proc. IEEE.
[33] Robert L. Ogniewicz,et al. Skeleton-space: a multiscale shape description combining region and boundary information , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.