Integrating CAD with Abaqus: A practical isogeometric analysis software platform for industrial applications

Isogeometric analysis (IGA) has been developed for more than a decade. However, the usage of IGA is by far limited mostly within academic community. The lack of automatic or semi-automatic software platform of IGA is one of the main bottlenecks that prevent IGA from wide applications in industry. In this paper, we present a comprehensive IGA software platform that allows IGA to be incorporated into existing commercial software such as Abaqus, heading one step further to bridge the gap between design and analysis. The proposed IGA software framework takes advantage of user-defined elements in Abaqus, linking with general. IGES files from commercial computer aided design packages, Rhino specific files and mesh data. The platform includes all the necessary modules of the design-through-analysis pipeline: pre-processing, surface and volumetric T-spline construction, analysis and post-processing. Several practical application problems are studied to demonstrate the capability of the proposed software platform.

[1]  Yuri Bazilevs,et al.  Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis , 2017 .

[2]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[3]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[4]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[5]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[6]  Kangkang Hu,et al.  Centroidal Voronoi tessellation based polycube construction for adaptive all-hexahedral mesh generation , 2016 .

[7]  T. Hughes,et al.  Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .

[8]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[9]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[10]  Régis Duvigneau,et al.  Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..

[11]  Roland Wüchner,et al.  Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures , 2015 .

[12]  Guoliang Xu,et al.  A robust 2-refinement algorithm in octree or rhombic dodecahedral tree based all-hexahedral mesh generation , 2013 .

[13]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[14]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[15]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[16]  Michael A. Scott,et al.  Isogeometric spline forests , 2014 .

[17]  Yongjie Zhang,et al.  Structure-aligned guidance estimation in surface parameterization using eigenfunction-based cross field , 2014, Graph. Model..

[18]  Bruno Lévy,et al.  Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.

[19]  Thomas J. R. Hughes,et al.  Conformal solid T-spline construction from boundary T-spline representations , 2013 .

[20]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[21]  T. Hughes,et al.  Converting an unstructured quadrilateral mesh to a standard T-spline surface , 2011 .

[22]  David J. Benson,et al.  Isogeometric Analysis with LS-DYNA , 2016 .

[23]  Jin Qian,et al.  Automatic unstructured all-hexahedral mesh generation from B-Reps for non-manifold CAD assemblies , 2012, Engineering with Computers.

[24]  Anindya Ghoshal,et al.  An interactive geometry modeling and parametric design platform for isogeometric analysis , 2015, Comput. Math. Appl..

[25]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[26]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[27]  Wenping Wang,et al.  Feature-preserving T-mesh construction using skeleton-based polycubes , 2015, Comput. Aided Des..

[28]  Roger A. Sauer,et al.  Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding , 2015 .

[29]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[30]  David Bommes,et al.  Dual loops meshing , 2012, ACM Trans. Graph..

[31]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[32]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[33]  Thomas J. R. Hughes,et al.  Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.

[34]  Thomas J. R. Hughes,et al.  Truncated T-splines: Fundamentals and methods , 2017 .

[35]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[36]  Xiaodong Wei,et al.  Handling Extraordinary Nodes with Weighted T-spline Basis Functions , 2015 .

[37]  Lei Liu,et al.  Weighted T-splines with application in reparameterizing trimmed NURBS surfaces , 2015 .

[38]  P. Camanho,et al.  Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials , 2002 .

[39]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[40]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[41]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[42]  P. Wriggers,et al.  Isogeometric large deformation frictionless contact using T-splines , 2014 .

[43]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.