On quadratic stability and stabilization of discrete-time interval systems

This paper presents necessary and sufficient conditions for the quadratic stability and stabilization of dynamic discrete-time interval systems. The results are obtained in terms of linear matrix inequality (LMI). With the powerful LMI toolbox, it is very convenient to solve these problems. The illustrative examples show that this method is effective to check the robust stability and to design the stabilizing controller for dynamic discrete-time interval systems.

[1]  Rama K. Yedavalli A necessary and sufficient 'extreme point' solution for checking robust stability of interval matrices , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[2]  C. Scherer,et al.  New robust stability and performance conditions based on parameter dependent multipliers , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[3]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[4]  F. Garofalo,et al.  Stability robustness of interval matrices via Lyapunov quadratic forms , 1993, IEEE Trans. Autom. Control..

[5]  D. Siljak,et al.  On stability of interval matrices , 1994, IEEE Trans. Autom. Control..

[6]  Eugenius Kaszkurewicz,et al.  Comments regarding "On stability of interval matrices" [with reply] , 1996, IEEE Trans. Autom. Control..

[7]  G. Acosta-Villarreal,et al.  Robust stability of interval matrices: simple tests , 1997, Proceedings of 40th Midwest Symposium on Circuits and Systems. Dedicated to the Memory of Professor Mac Van Valkenburg.

[8]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[9]  A. Rachid,et al.  Generalized Gerschgorin disc and stability analysis of dynamic interval systems , 1996 .

[10]  M. Mansour Robust stability of interval matrices , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[11]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[12]  Yau-Tarng Juang,et al.  Stability analysis of dynamic interval systems , 1989 .

[13]  A. Hmamed,et al.  Comments on "Necessary and sufficient conditions for the Hurwitz and Schur stability of interval matrices" , 1996, IEEE Trans. Autom. Control..

[14]  Weijie Mao,et al.  Criteria for robust stability of dynamic interval systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[15]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[16]  Eugenius Kaszkurewicz,et al.  Comments Regarding "On Stability of Interval Matrices"' , 1996 .

[17]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[18]  Ian R. Petersen,et al.  A riccati equation approach to the stabilization of uncertain linear systems , 1986, Autom..

[19]  I. Petersen A stabilization algorithm for a class of uncertain linear systems , 1987 .

[20]  Jun Wang,et al.  On stabilization of a new class of linear time-invariant interval systems via constant state feedback control , 2000, IEEE Trans. Autom. Control..

[21]  Xiao Yan Robust Hurwitz and Schur Stability Test for Interval Matrices , 2000 .

[22]  Christopher V. Hollot,et al.  Quadratic stability of interval matrices , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[23]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[24]  Rama K. Yedavalli An improved extreme point solution for checking robust stability of interval matrices with much reduced vertex set and combinatorial effort , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[25]  Kehui Wei,et al.  Stabilization of linear time-invariant interval systems via constant state feedback control , 1994, IEEE Trans. Autom. Control..

[26]  Jiri Rohn An algorithm for checking stability of symmetric interval matrices , 1996, IEEE Trans. Autom. Control..