Brain mapping in stereotactic surgery: A brief overview from the probabilistic targeting to the patient-based anatomic mapping

In this article, we briefly review the concept of brain mapping in stereotactic surgery taking into account recent advances in stereotactic imaging. The gold standard continues to rely on probabilistic and indirect targeting, relative to a stereotactic reference, i.e., mostly the anterior (AC) and the posterior (PC) commissures. The theoretical position of a target defined on an atlas is transposed into the stereotactic space of a patient's brain; final positioning depends on electrophysiological analysis. The method is also used to analyze final electrode or lesion position for a patient or group of patients, by projection on an atlas. Limitations are precision of definition of the AC-PC line, probabilistic location and reliability of the electrophysiological guidance. Advances in MR imaging, as from 1.5-T machines, make stereotactic references no longer mandatory and allow an anatomic mapping based on an individual patient's brain. Direct targeting is enabled by high-quality images, an advanced anatomic knowledge and dedicated surgical software. Labeling associated with manual segmentation can help for the position analysis along non-conventional, interpolated planes. Analysis of final electrode or lesion position, for a patient or group of patients, could benefit from the concept of membership, the attribution of a weighted membership degree to a contact or a structure according to its level of involvement. In the future, more powerful MRI machines, diffusion tensor imaging, tractography and computational modeling will further the understanding of anatomy and deep brain stimulation effects.

[1]  J. Talairach,et al.  Atlas d'anatomie stéréotaxique : repérage radiologique indirect des noyaux gris centraux des régions mésencéphalo-sous-optique et hypothalamique de l'homme , 1957 .

[2]  Ana Luisa Velasco,et al.  Electrical Stimulation of the Prelemniscal Radiation in the Treatment of Parkinson’s Disease: An Old Target Revised with New Techniques , 2001, Neurosurgery.

[3]  Konstantinos Arfanakis,et al.  Optimization of white matter tractography for pre-surgical planning and image-guided surgery. , 2006, Oncology reports.

[4]  P. Llorca,et al.  Is DBS-STN appropriate to treat severe Parkinson disease in an elderly population? , 2007, Neurology.

[5]  Sébastien Ourselin,et al.  A three-dimensional, histological and deformable atlas of the human basal ganglia. I. Atlas construction based on immunohistochemical and MRI data , 2007, NeuroImage.

[6]  G. Deuschl,et al.  Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: evaluation of active electrode contacts , 2003, Journal of neurology, neurosurgery, and psychiatry.

[7]  P M Rampini,et al.  Multiple sequential image-fusion and direct MRI localisation of the subthalamic nucleus for deep brain stimulation. , 2003, Journal of neurosurgical sciences.

[8]  K V Slavin,et al.  Direct visualization of the human subthalamic nucleus with 3T MR imaging. , 2006, AJNR. American journal of neuroradiology.

[9]  Erin D Bigler,et al.  Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. , 2006, Journal of neurotrauma.

[10]  Hangyi Jiang,et al.  Pediatric diffusion tensor imaging: Normal database and observation of the white matter maturation in early childhood , 2006, NeuroImage.

[11]  Abdelhamid Benazzouz,et al.  Imaging of subthalamic nucleus and ventralis intermedius of the thalamus , 2002, Movement disorders : official journal of the Movement Disorder Society.

[12]  J. Gybels,et al.  Deep brain stimulation for treatment‐refractory obsessive‐compulsive disorder: psychopathological and neuropsychological outcome in three cases , 2003, Acta psychiatrica Scandinavica.

[13]  Zvi Israel,et al.  Microelectrode Recording in Movement Disorder Surgery , 2004 .

[14]  Laura Cif,et al.  Deep brain stimulation for dystonia. Surgical technique. , 2002, Stereotactic and functional neurosurgery.

[15]  P. Llorca,et al.  Manic behaviour induced by deep-brain stimulation in Parkinson’s disease: evidence of substantia nigra implication? , 2006, Journal of Neurology, Neurosurgery & Psychiatry.

[16]  Laura Cif,et al.  Deep Brain Stimulation for Dystonia , 2003, Stereotactic and Functional Neurosurgery.

[17]  R A Bakay,et al.  Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. , 1999, Neurosurgery.

[18]  James C. Ehrhardt,et al.  Visualization of Subthalamic Nuclei with Cortex Attenuated Inversion Recovery MR Imaging , 2000, NeuroImage.

[19]  S. Schiff,et al.  Failure of single-unit neuronal activity to differentiate globus pallidus internus and externus in Parkinson disease. , 2002, Journal of neurosurgery.

[20]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[21]  Denis Le Bihan,et al.  Looking into the functional architecture of the brain with diffusion MRI , 2003, Nature Reviews Neuroscience.

[22]  Jean-Jacques Lemaire,et al.  Direct Stereotactic MRI Location in the Globus Pallidus for Chronic Stimulation in Parkinson's Disease , 1999, Acta Neurochirurgica.

[23]  Clement Hamani,et al.  Comparison of Three Methods of Targeting the Subthalamic Nucleus for Chronic Stimulation in Parkinson’s Disease , 2005, Neurosurgery.

[24]  Abdelhamid Benazzouz,et al.  Pretargeting for the Implantation of Stimulation Electrodes into the Subthalamic Nucleus: A Comparative Study of Magnetic Resonance Imaging and Ventriculography , 2006, Neurosurgery.

[25]  F. Duffner,et al.  Relevance of Image Fusion for Target Point Determination in Functional Neurosurgery , 2002, Acta Neurochirurgica.

[26]  S. Gill,et al.  MRI directed bilateral stimulation of the subthalamic nucleus in patients with Parkinson’s disease , 2003, Journal of neurology, neurosurgery, and psychiatry.

[27]  G. Schaltenbrand,et al.  Einführung in die stereotaktischen Operationen : mit einem Atlas des menschlichen Gehirns = Introduction to stereotaxis, with an atlas of the human brain , 1959 .

[28]  Y. Ben-Shlomo,et al.  Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. , 2006, Brain : a journal of neurology.

[29]  Y. Agid,et al.  Bilateral subthalamic stimulation for Parkinson's disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. , 2000, Journal of neurosurgery.

[30]  Wieslaw L. Nowinski,et al.  Statistical Analysis of 168 Bilateral Subthalamic Nucleus Implantations by Means of the Probabilistic Functional Atlas , 2005, Neurosurgery.

[31]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[32]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[33]  S. Siadoux,et al.  IRM stéréotaxique de la région sous-thalamique : optimisation d’une séquence de repérage pré-opératoire pour la mise en place d’électrodes de stimulation profonde chronique , 2005 .

[34]  J. Chazal,et al.  Stimulation électrique à haute fréquence du noyau sous-thalamique dans la maladie de Parkinson sévère idiopathique : analyse du site optimal de stimulation à partir des données électrophysiologiques per-opératoires et de l’IRM anatomique stéréotaxique , 2005 .

[35]  Yunling E. Du,et al.  Subthalamic stimulation for Parkinson disease: determination of electrode location necessary for clinical efficacy. , 2005, Neurosurgical focus.

[36]  Jean-Jacques Lemaire,et al.  Stimulation sous-thalamique dans la maladie de Parkinson sévère: Étude de la localisation des contacts effectifs , 2006 .

[37]  Marwan I. Hariz,et al.  Safety and Risk of Microelectrode Recording in Surgery for Movement Disorders , 2003, Stereotactic and Functional Neurosurgery.

[38]  H. Frieboes,et al.  An integrated computational/experimental model of tumor invasion. , 2006, Cancer research.

[39]  Pratik Mukherjee,et al.  Diffusion tensor imaging and fiber tractography in acute stroke. , 2005, Neuroimaging clinics of North America.

[40]  C. McIntyre,et al.  Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus , 2004, Clinical Neurophysiology.