The organization of tyrosine hydroxylase-immunopositive cells in the sparrow retina

[1]  Richard E Carson,et al.  Estradiol modulates neural response to conspecific and heterospecific song in female house sparrows: An in vivo positron emission tomography study , 2017, PloS one.

[2]  R. Nashmi,et al.  Differential Control of Dopaminergic Excitability and Locomotion by Cholinergic Inputs in Mouse Substantia Nigra , 2017, Current Biology.

[3]  Jeffrey S. Johnson,et al.  Somatic and neuritic spines on tyrosine hydroxylase–immunopositive cells of rat retina , 2017, The Journal of comparative neurology.

[4]  K. Stocker,et al.  Morphological changes in hippocampal cytoarchitecture as a function of spatial treatment in birds , 2017, Developmental neurobiology.

[5]  M. Krawczyk,et al.  Delayed neurogenesis with respect to eye growth shapes the pigeon retina for high visual acuity , 2016, Development.

[6]  B. Völgyi,et al.  Tyrosine hydroxylase positive perisomatic rings are formed around various amacrine cell types in the mammalian retina , 2015, Journal of neurochemistry.

[7]  Luke P. Tyrrell,et al.  Vision in avian emberizid foragers: maximizing both binocular vision and fronto-lateral visual acuity , 2015, The Journal of Experimental Biology.

[8]  E. Fernández-Juricic,et al.  Individual Variation in Cone Photoreceptor Density in House Sparrows: Implications for Between-Individual Differences in Visual Resolution and Chromatic Contrast , 2014, PloS one.

[9]  C. Eroglu,et al.  Rapid Golgi Analysis Method for Efficient and Unbiased Classification of Dendritic Spines , 2014, PloS one.

[10]  B. Völgyi,et al.  Compartment-specific tyrosine hydroxylase-positive innervation to AII amacrine cells in the rabbit retina , 2014, Neuroscience.

[11]  P. Detwiler,et al.  Inhibitory inputs tune the light response properties of dopaminergic amacrine cells in mouse retina. , 2013, Journal of neurophysiology.

[12]  C. L. Schlamp,et al.  Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina , 2013, Molecular vision.

[13]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[14]  J. Goodson,et al.  To flock or fight: Neurochemical signatures of divergent life histories in sparrows , 2012, Proceedings of the National Academy of Sciences.

[15]  C. Jeon,et al.  Two types of tyrosine hydroxylase-immunoreactive neurons in the zebrafish retina , 2011, Neuroscience Research.

[16]  J. Wingfield,et al.  Immunocytochemical study of rhodopsin-containing putative encephalic photoreceptors in house sparrow, Passer domesticus. , 2011, General and comparative endocrinology.

[17]  R. Northcutt,et al.  Immunohistochemical localization of calbindin D28k and calretinin in the retina of two lungfishes, Protopterus dolloi and Neoceratodus forsteri: Colocalization with choline acetyltransferase and tyrosine hydroxylase , 2011, Brain Research.

[18]  E. Fernández-Juricic,et al.  Retinal Ganglion Cell Topography of Five Species of Ground-Foraging Birds , 2010, Brain, Behavior and Evolution.

[19]  B. Reese,et al.  Morphology of dopaminergic amacrine cells in the mouse retina: Independence from homotypic interactions , 2009, The Journal of comparative neurology.

[20]  Kwoon Y. Wong,et al.  Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons , 2008, Proceedings of the National Academy of Sciences.

[21]  M. Muñoz,et al.  Calbindin-D28k and calretinin as markers of retinal neurons in the anuran amphibian Rana perezi , 2008, Brain Research Bulletin.

[22]  N. Moreno,et al.  Comparative analysis of calbindin D-28K and calretinin in the retina of anuran and urodele amphibians: Colocalization with choline acetyltransferase and tyrosine hydroxylase , 2007, Brain Research.

[23]  B. Roska,et al.  Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing , 2007, Current Biology.

[24]  D. Hunt,et al.  Avian Visual Pigments: Characteristics, Spectral Tuning, and Evolution , 2007, The American Naturalist.

[25]  P. Witkovsky,et al.  Rat retinal dopaminergic neurons: Differential maturation of somatodendritic and axonal compartments , 2005, The Journal of comparative neurology.

[26]  M. A. Raven,et al.  Dopaminergic amacrine cells in the inner nuclear layer and ganglion cell layer comprise a single functional retinal mosaic , 2003, The Journal of comparative neurology.

[27]  Stephen J Eglen,et al.  Determinants of the exclusion zone in dopaminergic amacrine cell mosaics , 2003, The Journal of comparative neurology.

[28]  H. Kolb,et al.  The neurons of the ground squirrel retina as revealed by immunostains for calcium binding proteins and neurotransmitters , 2002, Journal of neurocytology.

[29]  M. Sheng,et al.  Dentritic spines : structure, dynamics and regulation , 2001, Nature Reviews Neuroscience.

[30]  R. Masland Neuronal diversity in the retina , 2001, Current Opinion in Neurobiology.

[31]  Young-Ki Jeon,et al.  Morphology of calretinin and tyrosine hydroxylase-immunoreactive neurons in the pig retina. , 2001, Molecules and Cells.

[32]  W. Smeets,et al.  Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach , 2000, Brain Research Reviews.

[33]  R. Gábriel Calretinin is present in serotonin- and γ-aminobutyric acid-positive amacrine cell populations in the retina of Xenopus laevis , 2000, Neuroscience Letters.

[34]  R. Masland,et al.  The shapes and numbers of amacrine cells: Matching of photofilled with Golgi‐stained cells in the rabbit retina and comparison with other mammalian species , 1999, The Journal of comparative neurology.

[35]  W. Stell,et al.  Nitric oxide synthase‐containing cells in the retina, pigmented epithelium, choroid, and sclera of the chick eye , 1999, The Journal of comparative neurology.

[36]  E. Kicliter,et al.  Two groups of TH-like immunoreactive neurons in the frog (Rana pipiens) retina , 1999, Brain Research.

[37]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[38]  C. Jeon,et al.  Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog , 1998, Neuroscience Research.

[39]  R. W. Rodieck The First Steps in Seeing , 1998 .

[40]  J. N. Hokoç,et al.  Tyrosine hydroxylase expression in the Cebus monkey retina , 1997, Visual Neuroscience.

[41]  J. Cook,et al.  Spatial properties of retinal mosaics: An empirical evaluation of some existing measures , 1996, Visual Neuroscience.

[42]  K. Negishi,et al.  The occurrence of dopaminergic interplexiform cells correlates with the presence of cones in the retinae of fish , 1995, Visual Neuroscience.

[43]  C. Wildsoet,et al.  The spatial organization of tyrosine hydroxylase-immunoreactive amacrine cells in the chicken retina and the consequences of myopia , 1993, Vision Research.

[44]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[45]  C. Heizmann,et al.  Changes in Ca2+-binding proteins in human neurodegenerative disorders , 1992, Trends in Neurosciences.

[46]  H. Kolb,et al.  Localization of GABA, glycine, glutamate and tyrosine hydroxylase in the human retina , 1992, The Journal of comparative neurology.

[47]  L. Peichl Catecholaminergic amacrine cells in the dog and wolf retina , 1991, Visual Neuroscience.

[48]  H. Kolb,et al.  Postembedding immunocytochemistry for GABA and glycine reveals the synaptic relationships of the dopaminergic amacrine cell of the cat retina , 1991, The Journal of comparative neurology.

[49]  L. Peichl,et al.  Morphology and distribution of catecholaminergic amacrine cells in the cone‐dominated tree shrew retina , 1991, The Journal of comparative neurology.

[50]  D. Richards,et al.  Calretinin and calbindin in the retina of the developing chick , 1991, Cell and Tissue Research.

[51]  D. Dacey The dopaminergic amacrine cell , 1990, The Journal of comparative neurology.

[52]  H. Kolb,et al.  The synaptic organization of the dopaminergic amacrine cell in the cat retina , 1990, Journal of neurocytology.

[53]  R. Masland,et al.  Shapes and distributions of the catecholamine‐accumulating neurons in the rabbit retina , 1990, The Journal of comparative neurology.

[54]  H. Karten,et al.  Presumptive catecholaminergic ganglion cells in the pigeon retina , 1990, Visual Neuroscience.

[55]  A. Mariani,et al.  Two types of tyrosine hydroxylase‐immunoreactive amacrine cell in the rhesus monkey retina , 1988, The Journal of comparative neurology.

[56]  R. Masland Amacrine cells , 1988, Trends in Neurosciences.

[57]  H. Karten,et al.  Catecholaminergic subpopulation of retinal displaced ganglion cells projects to the accessory optic nucleus in the pigeon (Columba livia) , 1988, The Journal of comparative neurology.

[58]  V. Cassone,et al.  Retinohypothalamic projection and suprachiasmatic nucleus of the house sparrow, Passer domesticus , 1987, The Journal of comparative neurology.

[59]  H. Kolb,et al.  Distribution and morphology of dopaminergic amacrine cells in the retina of the turtle (Pseudemys scripta elegans) , 1987, Journal of neurocytology.

[60]  A. Mariani,et al.  Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  K. Negishi,et al.  Dendritic morphology of dopaminergic cells revealed by intracellular injection of Lucifer yellow in fixed carp retina , 1986, Brain Research.

[62]  C. W. Oyster,et al.  Morphology and distribution of tyrosine hydroxylase-like immunoreactive neurons in the cat retina. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[63]  N. Raoux,et al.  Morphology, density and distribution of tyrosine hydroxylase-like immunoreactive cells in the retina of mice , 1984, Brain Research.

[64]  A. Vigny,et al.  Morphology of primate's dopaminergic amacrine cells as revealed by TH-like immunoreactivity on retinal flat-mounts , 1984, Brain Research.

[65]  H. Wässle,et al.  The mosaic of nerve cells in the mammalian retina , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[66]  M. Menaker,et al.  Neural connections of sparrow pineal: role in circadian control of activity , 1975, Science.

[67]  M. Menaker,et al.  Pineal Function in Sparrows: Circadian Rhythms and Body Temperature , 1971, Science.

[68]  M. Menaker,et al.  Photoperiodically Significant Photoreception in Sparrows: Is the Retina Involved? , 1970, Science.

[69]  P. Greenfield,et al.  Localization of acetylcholinesterase in chick retina during histogenesis , 1956, The Journal of comparative neurology.

[70]  M. Menaker,et al.  Circadian photoreception in vertebrates. , 2007, Cold Spring Harbor symposia on quantitative biology.

[71]  C. Straznicky,et al.  Dendritic morphology and retinal distribution of tyrosine hydroxylase-like immunoreactive amacrine cells in Bufo marinus , 2004, Anatomy and Embryology.

[72]  M. Hau,et al.  Melatonin facilitates synchronization of sparrow circadian rhythms to light , 2004, Journal of Comparative Physiology A.

[73]  D. Marshak Synaptic inputs to dopaminergic neurons in mammalian retinas. , 2001, Progress in brain research.

[74]  P. Gardino,et al.  Differential distribution of a second type of tyrosine hydroxylase immunoreactive amacrine cell in the chick retina , 1998, Journal of neurocytology.

[75]  M. Ikura Calcium binding and conformational response in EF-hand proteins. , 1996, Trends in biochemical sciences.

[76]  J. Stone,et al.  Distribution of catecholaminergic cells in the retina of the rat, guinea pig, cat, and rabbit: Independence from ganglion cell distribution , 1988, The Journal of comparative neurology.

[77]  C. W. Oyster,et al.  Identification and characterization of tyrosine hydroxylase immunoreactive amacrine cells. , 1984, Investigative ophthalmology & visual science.

[78]  Luke P. Tyrrell,et al.  Distributed under Creative Commons Cc-by 4.0 Fovea: a New Program to Standardize the Measurement of Foveal Pit Morphology , 2022 .