Adaptive Finite Elements for Elliptic Optimization Problems with Control Constraints

In this paper we develop a posteriori error estimates for finite element discretization of elliptic optimization problems with pointwise inequality constraints on the control variable. We derive error estimators for assessing the discretization error with respect to the cost functional as well as with respect to a given quantity of interest. These error estimators provide quantitative information about the discretization error and guide an adaptive mesh refinement algorithm allowing for substantial saving in degrees of freedom. The behavior of the method is demonstrated on numerical examples.

[1]  Arnd Rösch,et al.  LINFINITY-Estimates for Approximated Optimal Control Problems , 2005, SIAM J. Control. Optim..

[2]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[3]  T. Geveci,et al.  On the approximation of the solution of an optimal control problem governed by an elliptic equation , 1979 .

[4]  Boris Vexler,et al.  Numerical Sensitivity Analysis for the Quantity of Interest in PDE-Constrained Optimization , 2007, SIAM J. Sci. Comput..

[5]  Ronald H. W. Hoppe,et al.  A posteriori error estimates for adaptive finite element discretizations of boundary control problems , 2006, J. Num. Math..

[6]  Arnd Rösch,et al.  Superconvergence Properties of Optimal Control Problems , 2004, SIAM J. Control. Optim..

[7]  Boris Vexler,et al.  Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems , 2007, SIAM J. Control. Optim..

[8]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems , 2005, Comput. Optim. Appl..

[9]  Roland Becker,et al.  A Posteriori Error Estimates for Parameter Identification , 2004 .

[10]  K. Malanowski Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems , 1982 .

[11]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[12]  A. V. Fursikov,et al.  Optimal control of distributed systems , 1999 .

[13]  Roland Becker,et al.  Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations , 2005 .

[14]  F. Tröltzsch Optimale Steuerung partieller Differentialgleichungen , 2005 .

[15]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[16]  Fredi Tröltzsch,et al.  Error estimates for linear-quadratic elliptic control problems , 2002, Analysis and Optimization of Differential Systems.

[17]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[18]  Roland Becker,et al.  Estimating the control error in discretized PDE-constrained optimization , 2006, J. Num. Math..

[19]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[20]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[21]  Arnd Rösch,et al.  Primal-Dual Active Set Strategy for a General Class of Constrained Optimal Control Problems , 2002, SIAM J. Optim..

[22]  Michael Hintermüller,et al.  AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .

[23]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[24]  Ronald H. W. Hoppe,et al.  Convergence Analysis of an Adaptive Finite Element Method for Distributed Control Problems with Control Constraints , 2007 .

[25]  A. Fursikov Optimal Control of Distributed Systems: Theory and Applications , 2000 .

[26]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[27]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[28]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[29]  Richard S. Falk,et al.  Approximation of a class of optimal control problems with order of convergence estimates , 1973 .

[30]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[31]  Arnd Rösch,et al.  Error estimates for linear-quadratic control problems with control constraints , 2006, Optim. Methods Softw..

[32]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[33]  Roland Becker Estimating the Control Error in discretized PDE-constrained Optimization , 2006 .

[34]  Rolf Rannacher,et al.  An Optimal Control Approach to A-Posteriori Error Estimation , 2001 .