Uncertainty quantification of overpressure buildup through inverse modeling of compaction processes in sedimentary basins

This study illustrates a procedure conducive to a preliminary risk analysis of overpressure development in sedimentary basins characterized by alternating depositional events of sandstone and shale layers. The approach rests on two key elements: (1) forward modeling of fluid flow and compaction, and (2) application of a model-complexity reduction technique based on a generalized polynomial chaos expansion (gPCE). The forward model considers a one-dimensional vertical compaction processes. The gPCE model is then used in an inverse modeling context to obtain efficient model parameter estimation and uncertainty quantification. The methodology is applied to two field settings considered in previous literature works, i.e. the Venture Field (Scotian Shelf, Canada) and the Navarin Basin (Bering Sea, Alaska, USA), relying on available porosity and pressure information for model calibration. It is found that the best result is obtained when porosity and pressure data are considered jointly in the model calibration procedure. Uncertainty propagation from unknown input parameters to model outputs, such as pore pressure vertical distribution, is investigated and quantified. This modeling strategy enables one to quantify the relative importance of key phenomena governing the feedback between sediment compaction and fluid flow processes and driving the buildup of fluid overpressure in stratified sedimentary basins characterized by the presence of low-permeability layers. The results here illustrated (1) allow for diagnosis of the critical role played by the parameters of quantitative formulations linking porosity and permeability in compacted shales and (2) provide an explicit and detailed quantification of the effects of their uncertainty in field settings.RésuméCette étude illustre une procédure conduisant à une analyse préliminaire du risque de développement de surpression dans un bassin sédimentaire caractérisé par l’alternance de niveaux de grès et de schiste argileux. L’approche repose sur deux éléments clef : (1) une modélisation préalable des écoulements et de la compaction et (2) une application d’une technique de réduction de la complexité du modèle basée sur un développement généralisé du polynôme du chaos (gPCE). Le modèle développé considère des processus de compaction verticale unidimensionnelle. Le modèle gPCE est ensuite utilisé en situation de modélisation inverse pour obtenir une estimation fiable des paramètres du modèle et une quantification de l’incertitude. La méthodologie est appliquée à deux cas de terrain décrits dans des publications antérieures, le Venture Field (Scotian Shelf, Canada), et le Basin de Navarin (Mer de Bering, Alaska, USA), reposant sur des données de porosité et de pression disponibles pour le calibrage du modèle. Le meilleur résultat est obtenu lorsque les données de porosité et de pression sont considérées simultanément dans la procédure de calibrage du modèle. La propagation de l’incertitude des paramètres d’entrée non connus sur les données de sortie du modèle, telles que la distribution verticale de la pression dans les pores, est étudiée et quantifiée. Cette stratégie de modélisation permet de quantifier l’importance relative du phénomène clef régissant l’interaction entre la compaction du sédiment et les processus d’écoulements, et conduisant à un excès de surpression hydraulique dans un bassin sédimentaire stratifié caractérisé par la présence de niveaux de faible perméabilité. Les résultats illustrés ici (1) permettent le diagnostic du rôle critique joué par les paramètres des équations reliant la porosité et la perméabilité dans des schistes argileux compactés et (2) fournissent une quantification explicite et détaillée des effets de leur incertitude pour des conditions naturelles de terrain.RESUMENEste estudio ilustra un procedimiento apropiada para el análisis preliminar del riesgo de desarrollo de sobrepresión en cuencas sedimentarias que se caracterizan por la alternancia de eventos de deposición de capas de areniscas y lutitas. El enfoque se basa en dos elementos fundamentales: (1) el modelado directo del flujo del fluido y la compactación, y (2) la aplicación de una técnica de reducción de la complejidad del modelo basado en una expansión polinómica generalizada del caos (gPCE). El modelo directo considera procesos unidimensionales de compactación vertical. El modelo gPCE se utiliza en un contexto de modelado inverso para obtener la estimación de parámetros de un modelo eficiente y la cuantificación de la incertidumbre. La metodología se aplica a dos escenarios de campo considerados en la literatura de trabajos anteriores, es decir, Venture Field (Scotian Shelf, Canada) y la Cuenca del Navarín (Mar de Bering, Alaska, EEUU) basándose en la información de la porosidad y la presión disponible para la calibración del modelo. Se encontró que se obtiene un mejor resultado cuando los datos de porosidad y de presión se consideran conjuntamente en el procedimiento de calibración del modelo. Se investigaron y cuantificaron la incertidumbre de propagación de los parámetros desconocidos de entrada en los resultados del modelo, y la distribución vertical de la presión poral. Esta estrategia de modelado permite cuantificar la importancia relativa de los fenómenos claves que regulan la retroalimentación entre los procesos de flujo de fluido en la compactación de los sedimentos y la conducción y acumulación del exceso de presión de fluido en cuencas sedimentarias estratificadas que se caracterizan por la presencia de capas de baja permeabilidad. Los resultados ilustran aquí por (1) permitir el diagnóstico del papel fundamental desempeñado por los parámetros en las formulaciones cuantitativas que enlazan la porosidad y la permeabilidad en las lutitas compactadas y (2) proporcionar una cuantificación explícita y detallada de los efectos de la incertidumbre en la configuración de campo.摘要本研究详细阐明了砂岩和页岩层交替沉积的沉积盆地中超压发展的整个过程,这个过程有利于对超压发展进行初步风险分析。该方法依赖于两个关键要素:(1)流体流动和压实的正演模拟,及(2)基于概化多项式混沌膨胀(gPCE)的模型-复杂度还原技术。正演模型考虑了一维垂直压实过程。然后概化多项式混沌膨胀(gPCE)模型用于反演模拟环境中,以获取有效的模型参数估算结果和不确定性量化结果。该方法应用于过去文献中考虑到的两个野外情况下,即(加拿大Scotian大陆架)的Venture牧场及(美国阿拉斯加州白令海)的Navarin盆地,依靠可现有的孔隙率和压力信息进行模型校准。发现在模型校准程序中,综合考虑孔隙率和压力就能获得最好的结果。调查和量化了模型输出中未知输入参数诸如孔隙压力垂直分布导致的不确定性传播。这个模拟策略能使人们量化关键现象的相关重要性,这些关键现象控制着沉积压实和液体流动过程之间的反馈及推进存在低渗透性地层的分层沉积盆地中液体超压的逐渐积累。这里描述的的结果:(1)能够诊断连接压实页岩中孔隙率和渗透性的定量公式参数所化发挥的关键作用以及 (2)提供野外背景下不确定性影响的明确和详细的量化结果。ResumoEste estudo ilustra um procedimento útil para uma análise preliminar do risco de sobrepressão desenvolvido em bacias sedimentares caracterizadas por eventos alternados de deposição de camadas de arenitos e xisto. A abordagem apoia-se em dois elementos chave: (1) modelagem direta do fluxo de fluido e compactação; e (2) aplicação de uma técnica de redução de complexidade do modelo baseado em uma expansão polinomial generalizada do caos (qPCE). A modelagem direta considera um processo de compactação vertical unidimensional. O modelo qPCE é então usado em um contexto de modelagem inversa para obter um modelo eficiente de estimativa de parâmetros e quantificação de incertezas. A metodologia é aplicada em duas configurações de campo consideradas em obras de literatura anteriores, por exemplo, o Campo Venture (plataforma Escocesa, Canadá) e a Bacia Navarin (Mar de Bering, Alasca, EUA), contando com informações de porosidade e pressão disponíveis para calibração do modelo. Verificou-se que o melhor resultado é obtido quando os dados de porosidade e pressão são considerados em conjunto no processo de calibração do modelo. Propagação de incerteza para entrada de parâmetros desconhecidos para modelar os resultados, tais como a distribuição vertical da pressão dos poros, é investigada e quantificada. Esta estratégia possibilita uma modelagem para quantificar a importância relativa dos fenômenos chave que regulam a retroalimentação entre compactação do sedimento e o processo de fluxos de fluido e levam ao acúmulo de fluido em sobrepressão em bacias sedimentares estratificadas caracterizadas pela presença de camadas pouco permeáveis. Os resultados aqui ilustrados (1) permitem diagnósticos do papel crítico desempenhado pelos parâmetros de formulação quantitativos que ligam a porosidade e permeabilidade em xistos compactados e (2) fornecem uma quantificação explicita e detalhada dos efeitos da sua incerteza em configurações de campo.

[1]  K. Y. Liu,et al.  Quantitative estimation of overpressure caused by gas generation and application to the Baiyun Depression in the Pearl River Mouth Basin, South China Sea , 2016 .

[2]  C. E. Neuzil,et al.  Hydromechanical coupling in geologic processes , 2003 .

[3]  C. Bethke,et al.  Overpressure and petroleum generation and accumulation in the Dongying Depression of the Bohaiwan Basin, China , 2001 .

[4]  I. Lerche,et al.  Inversion of dynamical indicators in quantitative basin analysis models. III. Multiwell information and two-dimensional case histories , 1995 .

[5]  E. Oelkers,et al.  A petrographic and computational investigation of quartz cementation and porosity reduction in North Sea sandstones , 1996 .

[6]  C. Tsang,et al.  Deep hydrogeology: a discussion of issues and research needs , 2013, Hydrogeology Journal.

[7]  I. Sobol,et al.  Global sensitivity indices for nonlinear mathematical models. Review , 2005 .

[8]  Gye-Chun Cho,et al.  Gas hydrate dissociation in sediments: Pressure‐temperature evolution , 2008 .

[9]  Dongxiao Zhang,et al.  Probabilistic collocation method for strongly nonlinear problems: 1. Transform by location , 2013 .

[10]  Garry D. Karner,et al.  A physical explanation for the positioning of the depth to the top of overpressure in shale‐dominated sequences in the Gulf Coast basin, United States , 1994 .

[11]  D. Ghosh,et al.  Overpressure in the Malay Basin and prediction methods , 2016 .

[12]  Monica Riva,et al.  Inverse modeling of geochemical and mechanical compaction in sedimentary basins through Polynomial Chaos Expansion , 2014 .

[13]  Richard E. Swarbrick,et al.  Diagenesis in North Sea HPHT clastic reservoirs — consequences for porosity and overpressure prediction , 1999 .

[14]  H. Marín‐Moreno Numerical modelling of overpressure generation in deep basins and response of Arctic gas hydrate to ocean warming , 2014 .

[15]  Ben A. Eaton,et al.  The Equation for Geopressure Prediction from Well Logs , 1975 .

[16]  Magnus Wangen,et al.  Physical Principles of Sedimentary Basin Analysis , 2010 .

[17]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[18]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[19]  Olav Walderhaug,et al.  Precipitation Rates for Quartz Cement in Sandstones Determined by Fluid-Inclusion Microthermometry and Temperature-History Modeling , 1994 .

[20]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[21]  Héctor Marín-Moreno,et al.  Inverse modelling and seismic data constraints on overpressure generation by disequilibrium compaction and aquathermal pressuring: application to the Eastern Black Sea Basin , 2013 .

[22]  Rachida Bouhlila,et al.  Reactive Transport Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial Chaos Expansion , 2012, Water, Air, & Soil Pollution.

[23]  Alberto Guadagnini,et al.  Comparative analysis of formulations for conservative transport in porous media through sensitivity‐based parameter calibration , 2013 .

[24]  Stefano Tarantola,et al.  Sensitivity analysis practices: Strategies for model-based inference , 2006, Reliab. Eng. Syst. Saf..

[25]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[26]  P. H. Nelson,et al.  Permeability-porosity relationships in sedimentary rocks , 1994 .

[27]  M. Bouteca,et al.  Validity of the porosity/effective-stress concept in sedimentary basin modelling , 1994 .

[28]  O. Khader,et al.  Impacts of Pleistocene glacial loading on abnormal pore‐water pressure in the eastern Michigan Basin , 2014 .

[29]  Xu-sheng Wang,et al.  Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media , 2010 .

[30]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[31]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[32]  Lori Hathon,et al.  Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality , 2010 .

[33]  Dongxiao Zhang,et al.  Efficient and Accurate Global Sensitivity Analysis for Reservoir Simulations By Use of Probabilistic Collocation Method , 2014 .

[34]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[35]  Diane M. McKnight,et al.  Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids , 2003 .

[36]  Alberto Guadagnini,et al.  Use of global sensitivity analysis and polynomial chaos expansion for interpretation of nonreactive transport experiments in laboratory‐scale porous media , 2011 .

[37]  G. Pe‐Piper,et al.  Thermal and hydrocarbon-charge history and the relationship between diagenesis and reservoir connectivity: Venture field, offshore Nova Scotia, eastern Canada1Geological Survey of Canada Contribution 20100418. , 2011 .

[38]  R. Swarbrick,et al.  Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis , 2011 .

[39]  A. Fowler,et al.  Pressure solution and viscous compaction in sedimentary basins , 1999 .

[40]  P. Nadeau,et al.  Earth’s energy “Golden Zone”: a synthesis from mineralogical research , 2011, Clay Minerals.

[41]  Olav Walderhaug,et al.  Kinetic Modeling of Quartz Cementation and Porosity Loss in Deeply Buried Sandstone Reservoirs , 1996 .

[42]  Craig M. Bethke,et al.  A Numerical Model of Compaction-Driven Groundwater Flow and Heat Transfer and Its Application to the Paleohydrology of Intracratonic Sedimentary Basins , 1985 .

[43]  I. Sobol Global Sensitivity Indices for Nonlinear Mathematical Models , 2004 .

[44]  Alberto Guadagnini,et al.  Multimodel framework for characterization of transport in porous media , 2015 .

[45]  R. H. Lander,et al.  Predicting Porosity through Simulating Sandstone Compaction and Quartz Cementation , 1999 .

[46]  J. J. Jiaoa,et al.  Abnormal fluid pressures caused by deposition and erosion of sedimentary basins , 1997 .

[47]  Guang Lin,et al.  An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling , 2014, J. Comput. Phys..

[48]  Mark Person,et al.  A finite element method for simulating fault block motion and hydrothermal fluid flow within rifting basins , 1995 .

[49]  Alberto Guadagnini,et al.  Data-worth analysis through probabilistic collocation-based Ensemble Kalman Filter , 2016 .

[50]  Howard A. Zebker,et al.  Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California , 2003 .

[51]  E. Screaton Recent advances in subseafloor hydrogeology: focus on basement–sediment interactions, subduction zones, and continental slopes , 2010 .

[52]  Alberto Guadagnini,et al.  Inverse Analysis of Stochastic Moment Equations for Transient Flow in Randomly Heterogeneous Media , 2009 .

[53]  R. Swarbrick,et al.  Geologically-driven pore fluid pressure models and their implications for petroleum exploration. Introduction to thematic set: Geologically-driven pressure models , 2011 .

[54]  L. Cathles,et al.  Fluid transport by solitary waves along growing faults , 2002 .

[55]  Brian McPherson,et al.  Overpressures in the Uinta Basin, Utah: Analysis using a three‐dimensional basin evolution model , 2001 .

[56]  Alberto Guadagnini,et al.  Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model , 2013, Computational Geosciences.

[57]  B. Mudford Modeling the occurrence of overpressures on the Scotian Shelf, offshore eastern Canada , 1988 .

[58]  Omar M. Knio,et al.  Introduction: Uncertainty Quantification and Propagation , 2010 .

[59]  Glenn L. Bowers,et al.  Pore Pressure Estimation From Velocity Data: Accounting for Overpressure Mechanisms Besides Undercompaction , 1995 .

[60]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[61]  C. Neuzil How permeable are clays and shales , 1994 .

[62]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[63]  I. Lerche,et al.  Inversion of dynamical indicators in quantitative basin analysis models. II. Synthetic tests and a case history using dynamical indicator tomography , 1993 .

[64]  P. Ortoleva,et al.  Quantitative basin modeling: present state and future developments towards predictability , 2004 .

[65]  Raul Tempone,et al.  A quasi-optimal sparse grids procedure for groundwater flows , 2014 .