Probing the evolution and morphology of hard carbon spheres

[1]  M. Thorpe,et al.  Amorphous graphene: a realization of Zachariasen’s glass , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[3]  Wenbin Li,et al.  Spherical hard carbon prepared from potato starch using as anode material for Li-ion batteries , 2011 .

[4]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[5]  V. Pol,et al.  Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: Evaluation as anodes in lithium electrochemical cells , 2011 .

[6]  J. Valverde,et al.  Carbon nanospheres: synthesis, physicochemical properties and applications , 2011 .

[7]  A. Soper,et al.  NIMROD: The Near and InterMediate Range Order Diffractometer of the ISIS second target station. , 2010, The Review of scientific instruments.

[8]  K. Müllen,et al.  Nanographene‐Constructed Hollow Carbon Spheres and Their Favorable Electroactivity with Respect to Lithium Storage , 2010, Advanced materials.

[9]  Markus Antonietti,et al.  Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. , 2010, Chemical Society reviews.

[10]  Xuejie Huang,et al.  Research on Advanced Materials for Li‐ion Batteries , 2009 .

[11]  V. Pol,et al.  A solvent free process for the generation of strong, conducting carbon spheres by the thermal degradation of waste polyethylene terephthalate , 2009 .

[12]  Hong Li,et al.  Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries , 2007 .

[13]  V. Pol,et al.  Carbon spherules: synthesis, properties and mechanistic elucidation , 2004 .

[14]  R. Ruoff,et al.  Would Diamond Nanorods Be Stronger than Fullerene Nanotubes , 2003 .

[15]  Seung M. Oh,et al.  Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. , 2003, Journal of the American Chemical Society.

[16]  Liquan Chen,et al.  Novel spherical microporous carbon as anode material for Li-ion batteries , 2002 .

[17]  Christopher Roland,et al.  Ab initio investigations of lithium diffusion in carbon nanotube systems. , 2002, Physical review letters.

[18]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[19]  Liquan Chen,et al.  Monodispersed hard carbon spherules with uniform nanopores , 2001 .

[20]  R. Hurt,et al.  Liquid Crystals and Carbon Materials , 2000 .

[21]  R. Hurt,et al.  A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons , 2000 .

[22]  J. Fischer,et al.  Short-range order in disordered carbons: where does the Li go? , 1999 .

[23]  A. Misra,et al.  Relating Materials Properties to Structure with MATPROP Software: Handbook and Software for Polymer Calculations and Materials Properties , 1999 .

[24]  M. Inagaki Discussion of the formation of nanometric texture in spherical carbon bodies , 1997 .

[25]  P. Ajayan,et al.  Smallest carbon nanotube , 1992, Nature.

[26]  Franzblau Ds,et al.  Computation of ring statistics for network models of solids. , 1991 .

[27]  J. Robertson Hard amorphous (diamond-like) carbons , 1991 .

[28]  A. Oberlin,et al.  Mechanism of carbonization under pressure, part II: Influence of impurities , 1990 .

[29]  A. Oberlin,et al.  Mechanism of carbonization under pressure, part I: Influence of aromaticity (polyethylene and anthracene) , 1990 .

[30]  M. Inagaki,et al.  Formation of carbon spherules by pressure carbonization—Relation to molecular structure of precursor , 1988 .

[31]  M. Inagaki,et al.  Conditions for carbon spherule formation under pressure , 1984 .

[32]  M. Inagaki,et al.  Pressure carbonization of polyethylene-polyvinylchloride mixtures , 1983 .

[33]  M. Inagaki,et al.  Microstructure of carbon spherules , 1982 .

[34]  James E. Huheey,et al.  Inorganic chemistry; principles of structure and reactivity , 1972 .

[35]  SHIRLEY V. KING,et al.  Ring Configurations in a Random Network Model of Vitreous Silica , 1967, Nature.

[36]  G. H. Taylor,et al.  The formation of graphitizing carbons from the liquid phase , 1965 .

[37]  G. H. Taylor,et al.  Formation of Graphitizing Carbons from the Liquid Phase , 1965, Nature.