Animal-Borne Telemetry: An Integral Component of the Ocean Observing Toolkit

Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management.

Víctor M. Eguíluz | Michele Thums | Steven J. Cooke | Barbara Block | Kim Aarestrup | Juan Fernández-Gracia | Elliott L. Hazen | Steven J. Bograd | Charlie Huveneers | Eva B. Thorstad | Daniel P. Costa | Masaru Naruoka | Dorian Cazau | Bill Woodward | Colin Simpfendorfer | David W. Sims | Paul Cowley | Stephanie Brodie | Michelle Heupel | Tim Moltmann | Christophe Guinet | Mark Hindell | Luis A. Hückstädt | Christian Lydersen | Kit M. Kovacs | Carlos Duarte | Yoshinari Yonehara | Lars Boehme | Andrew W. Trites | Guy D. Williams | Gilles Reverdin | Kongkiat Kittiwattanawong | Ana M. M. Sequeira | Ian Jonsen | Gemma Carroll | Graeme C. Hays | Katsufumi Sato | D. Sims | V. Eguíluz | G. Williams | F. Roquet | M. Hindell | M. Thums | M. Biuw | D. Costa | M. Fedak | G. Hays | N. Queiroz | I. Jonsen | E. Hazen | S. Bograd | Y. Yonehara | Yusuke Goto | Katsufumi Sato | J. Fernández-Gracia | C. Guinet | M. Meekan | D. Cazau | G. Reverdin | C. Duarte | B. Block | A. Sequeira | S. Iverson | M. Heupel | K. Kovacs | C. Lydersen | S. Cooke | C. McMahon | L. Boehme | R. Harcourt | L. Hückstädt | M. Muelbert | J. Charrassin | Baptiste Picard | A. Trites | K. Aarestrup | M. Hammill | P. D. de Bruyn | C. Simpfendorfer | M. Weise | E. Thorstad | P. Cowley | S. Brodie | F. Whoriskey | K. Goetz | P. D. Bruyn | C. Huveneers | Tim Moltmann | B. Woodward | L. Ferreira | Guy D. Williams | Martin Biuw | D. W. Sims | K. Komatsu | Xuelei Zhang | Gemma Carroll | T. Jeanniard du Dot | S. Jaaman | K. Kittiwattanawong | M. Naruoka | Lachlan R. Phillips | A. Treasure | Fabien Roquet | Baptiste Picard | Clive McMahon | Jean-Benoit Charrassin | Kosei Komatsu | Mark Meekan | Nuno Queiroz | Fred Whoriskey | Rob Harcourt | Yusuke Goto | Xuelei Zhang | Mônica Muelbert | Mike Weise | P. J. Nico de Bruyn | Tiphaine Jeanniard du Dot | Luciana C. Ferreira | Kimberly Goetz | Mike Hammill | Sara Iverson | Saifullah Arifin Jaaman | Lachlan Phillips | Anne M. Treasure | Mike A. Fedak | Tiphaine Jeanniard du Dot | G. Carroll | Mark Biuw

[1]  M. Hindell,et al.  Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking , 2015 .

[2]  A. Adams,et al.  Keeping up with the Silver King: Using cooperative acoustic telemetry networks to quantify the movements of Atlantic tarpon (Megalops atlanticus) in the coastal waters of the southeastern United States , 2018, Fisheries Research.

[3]  E. Revilla,et al.  A movement ecology paradigm for unifying organismal movement research , 2008, Proceedings of the National Academy of Sciences.

[4]  K. Yoda,et al.  Assimilation of the seabird and ship drift data in the north-eastern sea of Japan into an operational ocean nowcast/forecast system , 2015, Scientific reports.

[5]  G. Stenson,et al.  Atlantic water variability on the SE Greenland continental shelf and its relationship to SST and bathymetry , 2012 .

[6]  Navinder J. Singh,et al.  Linking Movement Ecology with Wildlife Management and Conservation , 2016, Front. Ecol. Evol..

[7]  M. A. Fedak,et al.  Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals , 2008, Proceedings of the National Academy of Sciences.

[8]  A. Budden,et al.  Big data and the future of ecology , 2013 .

[9]  Roger Proctor,et al.  Australia’s continental-scale acoustic tracking database and its automated quality control process , 2018, Scientific Data.

[10]  Michele Thums,et al.  Big data analyses reveal patterns and drivers of the movements of southern elephant seals , 2017, Scientific Reports.

[11]  K. Steffen,et al.  Freshwater Flux and Spatiotemporal Simulated Runoff Variability into Ilulissat Icefjord, West Greenland, Linked to Salinity and Temperature Observations near Tidewater Glacier Margins Obtained Using Instrumented Ringed Seals , 2015 .

[12]  Scott A. Shaffer,et al.  Predicted habitat shifts of Pacific top predators in a changing climate , 2013 .

[13]  Birgitte I. McDonald,et al.  Approaches to studying climatic change and its role on the habitat selection of antarctic pinnipeds. , 2010, Integrative and comparative biology.

[14]  D. Righton,et al.  Conservation physiology for applied management of marine fish: an overview with perspectives on the role and value of telemetry , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  Yusuke Goto,et al.  Asymmetry hidden in birds’ tracks reveals wind, heading, and orientation ability over the ocean , 2017, Science Advances.

[16]  Steven J. Cooke,et al.  Addressing Challenges in the Application of Animal Movement Ecology to Aquatic Conservation and Management , 2017, Front. Mar. Sci..

[17]  D. Biro,et al.  Cumulative culture can emerge from collective intelligence in animal groups , 2017, Nature Communications.

[18]  M. A. Fedak,et al.  Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions , 2007, Proceedings of the National Academy of Sciences.

[19]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[20]  Steven J. Cooke,et al.  To share or not to share in the emerging era of big data: perspectives from fish telemetry researchers on data sharing , 2017 .

[21]  Helen Bailey,et al.  Ontogeny in marine tagging and tracking science: technologies and data gaps , 2012 .

[22]  J. Sallée,et al.  Southern Ocean Warming , 2018, Oceanography.

[23]  O. Ovaskainen,et al.  State-space models of individual animal movement. , 2008, Trends in ecology & evolution.

[24]  J. M. Price,et al.  Toward a national animal telemetry network for aquatic observations in the United States , 2016, Animal Biotelemetry.

[25]  C. Guinet,et al.  Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems , 2015, PloS one.

[26]  M. Meredith,et al.  Temperature signature of high latitude Atlantic boundary currents revealed by marine mammal‐borne sensor and Argo data , 2011 .

[27]  B. Manly,et al.  Resource selection by animals: statistical design and analysis for field studies. , 1994 .

[28]  Olivier Aumont,et al.  Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system , 2010 .

[29]  Bernie J. McConnell,et al.  Transmitting species‐interaction data from animal‐borne transceivers through Service Argos using Bluetooth communication , 2014 .

[30]  The evolution of water property in the Mackenzie Bay polynya during Antarctic winter , 2017, Journal of Ocean University of China.

[31]  Robert Harcourt,et al.  High sea surface temperatures driven by a strengthening current reduce foraging success by penguins , 2016, Scientific Reports.

[32]  Luis A. Hückstädt,et al.  Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories , 2016 .

[33]  Alistair J. Hobday,et al.  Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays , 2006 .

[34]  Steven J. Cooke,et al.  Making connections in aquatic ecosystems with acoustic telemetry monitoring , 2014 .

[35]  M. Biuw,et al.  Eddy overturning of the Antarctic Slope Front controls glacial melting in the Eastern Weddell Sea , 2011 .

[36]  Toby A Patterson,et al.  Classifying movement behaviour in relation to environmental conditions using hidden Markov models. , 2009, The Journal of animal ecology.

[37]  E. Hazen,et al.  Direct quantification of energy intake in an apex marine predator suggests physiology is a key driver of migrations , 2015, Science Advances.

[38]  Luis A. Hückstädt,et al.  Oceanic controls on the mass balance of Wilkins Ice Shelf, Antarctica , 2012 .

[39]  Katsutoshi Watanabe,et al.  IUCN Red List of Threatened Species: ビワヨシノボリ , 2018 .

[40]  Matthew D. Taylor,et al.  A standardised framework for analysing animal detections from automated tracking arrays , 2018, Animal Biotelemetry.

[41]  Bryan C. Daniels,et al.  Control of finite critical behaviour in a small-scale social system , 2016, Nature Communications.

[42]  Development of an animal-borne “sonar tag” for quantifying prey availability: test deployments on northern elephant seals , 2015, Animal Biotelemetry.

[43]  Sam L Cox,et al.  Processing of acceleration and dive data on‐board satellite relay tags to investigate diving and foraging behaviour in free‐ranging marine predators , 2017, Methods in ecology and evolution.

[44]  Michele Thums,et al.  The Ecology of Human Mobility. , 2017, Trends in ecology & evolution.

[45]  L. Belbin,et al.  What Went Where When? Representing Animal Movements as Simple Darwin Core Occurrences , 2018 .

[46]  Brett T. McClintock,et al.  A general discrete‐time modeling framework for animal movement using multistate random walks , 2012 .

[47]  Matthew H. Godfrey,et al.  Climate change and marine turtles , 2009 .

[48]  Nicolas E. Humphries,et al.  Environmental context explains Lévy and Brownian movement patterns of marine predators , 2010, Nature.

[49]  P. Turchin Quantitative Analysis Of Movement , 1998 .

[50]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[51]  K. Yoda,et al.  Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction , 2016, Proceedings of the National Academy of Sciences.

[52]  Kim Aarestrup,et al.  Oceanic Spawning Migration of the European Eel (Anguilla anguilla) , 2009, Science.

[53]  Rory P. Wilson,et al.  When three per cent may not be three per cent; device-equipped seabirds experience variable flight constraints , 2012 .

[54]  G. Hays,et al.  A biologist's guide to assessing ocean currents: a review , 2012 .

[55]  M. Fedak,et al.  Seasonal inflow of warm water onto the southern Weddell Sea continental shelf, Antarctica , 2012 .

[56]  Martin Wæver Pedersen,et al.  State-space models for bio-loggers: A methodological road map , 2013 .

[57]  Steven J. Cooke,et al.  Optimizing marine spatial plans with animal tracking data , 2019, Canadian Journal of Fisheries and Aquatic Sciences.

[58]  B. Block,et al.  A new satellite technology for tracking the movements of Atlantic bluefin tuna. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Carlos M. Duarte,et al.  Compliant lightweight non-invasive standalone “Marine Skin” tagging system , 2018, npj Flexible Electronics.

[60]  T. Vicsek,et al.  Collective Motion , 1999, physics/9902023.

[61]  Michael P. Meredith,et al.  Seasonal evolution of the upper-ocean adjacent to the South Orkney Islands, Southern Ocean: results from a "lazy biological mooring". , 2011 .

[62]  Ruoying He,et al.  Coastal ocean wind fields gauged against the performance of an ocean circulation model , 2004 .

[63]  Francesca Cagnacci,et al.  A plea for standards in reporting data collected by animal-borne electronic devices , 2016, Animal Biotelemetry.

[64]  F. Roquet,et al.  The ocean mixed-layer under Southern Ocean sea-ice: Seasonal cycle and forcing , 2017 .

[65]  Devin S Johnson,et al.  Continuous-time correlated random walk model for animal telemetry data. , 2008, Ecology.

[66]  Upper ocean stratification and sea ice growth rates during the summer-fall transition, as revealed by Elephant seal foraging in the Adélie Depression, East Antarctica , 2010 .

[67]  A. Sterl,et al.  Fifteen years of ocean observations with the global Argo array , 2016 .

[68]  Ward Appeltans,et al.  Essential ocean variables for global sustained observations of biodiversity and ecosystem changes , 2018, Global change biology.

[69]  Nicolas E. Humphries,et al.  Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots , 2016, Proceedings of the National Academy of Sciences.

[70]  K. Kovacs,et al.  Upper-ocean hydrography of the Nordic Seas during the International Polar Year (2007–2008) as observed by instrumented seals and Argo floats , 2014 .

[71]  Edward A Codling,et al.  Navigational efficiency in a biased and correlated random walk model of individual animal movement. , 2018, Ecology.

[72]  Elizabeth A. Fulton,et al.  Developing priority variables (“ecosystem Essential Ocean Variables” — eEOVs) for observing dynamics and change in Southern Ocean ecosystems , 2016 .

[73]  Trevor McIntyre,et al.  Trends in tagging of marine mammals: a review of marine mammal biologging studies , 2014 .

[74]  Christophe Guinet,et al.  Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator , 2013, Proceedings of the Royal Society B: Biological Sciences.

[75]  G. Williams,et al.  A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals , 2014, Scientific Data.

[76]  A. Derocher,et al.  Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. , 2013, The Journal of animal ecology.

[77]  T. Tamura,et al.  Antarctic Bottom Water production from the Vincennes Bay Polynya, East Antarctica , 2014 .

[78]  J. Kohler,et al.  Subglacial discharge plume behaviour revealed by CTD-instrumented ringed seals , 2018, Scientific Reports.

[79]  T. Duong,et al.  The ocean has depth: two- versus three-dimensional space use estimators in a demersal reef fish , 2017 .

[80]  Lucas N Joppa,et al.  Understanding movement data and movement processes: current and emerging directions. , 2008, Ecology letters.

[81]  Bernie J. McConnell,et al.  Salinity and temperature structure of a freezing Arctic fjord—monitored by white whales (Delphinapterus leucas) , 2002 .

[82]  Brett T McClintock,et al.  When to be discrete: the importance of time formulation in understanding animal movement , 2014, Movement Ecology.

[83]  M. Pinsky,et al.  Marine defaunation: Animal loss in the global ocean , 2015, Science.

[84]  A. Ford,et al.  Tracking the Conservation Promise of Movement Ecology , 2018, Front. Ecol. Evol..

[85]  D. Oro,et al.  Rafting behaviour of seabirds as a proxy to describe surface ocean currents in the Balearic Sea , 2019, Scientific Reports.

[86]  David W Sims,et al.  Flexible foraging movements of leatherback turtles across the North Atlantic Ocean. , 2006, Ecology.

[87]  Carl Wunsch,et al.  Estimates of the Southern Ocean general circulation improved by animal‐borne instruments , 2013 .

[88]  F. Roquet,et al.  Variation in the Distribution and Properties of Circumpolar Deep Water in the Eastern Amundsen Sea, on Seasonal Timescales, Using Seal‐Borne Tags , 2018 .

[89]  Daniel P. Costa,et al.  New Insights into Pelagic Migrations: Implications for Ecology and Conservation , 2012 .

[90]  Daniel P. Costa,et al.  Upper ocean variability in west Antarctic Peninsula continental shelf waters as measured using instrumented seals , 2008 .

[91]  Jonathan R. Potts,et al.  Unveiling trade-offs in resource selection of migratory caribou using a mechanistic movement model of availability , 2015 .

[92]  Roland Langrock,et al.  Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. , 2012, Ecology.

[93]  F. D’Ortenzio,et al.  Calibration procedures and first dataset of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags , 2012 .

[94]  M. Heupel,et al.  Three-dimensional kernel utilization distributions improve estimates of space use in aquatic animals , 2012 .

[95]  Roland Langrock,et al.  Analysis of animal accelerometer data using hidden Markov models , 2016, 1602.06466.

[96]  Elizabeth A. McHuron,et al.  Convergence of marine megafauna movement patterns in coastal and open oceans , 2018, Proceedings of the National Academy of Sciences.

[97]  Jishnu Keshavan,et al.  Detecting intermittent switching leadership in coupled dynamical systems , 2018, Scientific Reports.

[98]  Michael P. Meredith,et al.  Antarctic Circumpolar Current frontal system in the South Atlantic: Monitoring using merged Argo and animal-borne sensor data , 2008 .

[99]  I. Attrée,et al.  CLIQ-BID: A method to quantify bacteria-induced damage to eukaryotic cells by automated live-imaging of bright nuclei , 2017, Scientific Reports.

[100]  Alexandre Morin,et al.  Distortion and destruction of colloidal flocks in disordered environments , 2016, Nature Physics.

[101]  Michele Thums,et al.  Translating Marine Animal Tracking Data into Conservation Policy and Management. , 2019, Trends in ecology & evolution.

[102]  Robin Freeman,et al.  Inferring animal social networks and leadership: applications for passive monitoring arrays , 2016, Journal of The Royal Society Interface.

[103]  Christian Rutz,et al.  Reality mining of animal social systems. , 2013, Trends in ecology & evolution.

[104]  D. Thompson,et al.  Eastern rockhopper penguins Eudyptes filholi as biological samplers of juvenile and sub-adult cephalopods around Campbell Island, New Zealand , 2018, Polar Biology.

[105]  Bernie J. McConnell,et al.  Estimating space‐use and habitat preference from wildlife telemetry data , 2008 .

[106]  R. Kays,et al.  Terrestrial animal tracking as an eye on life and planet , 2015, Science.

[107]  Michael A. Fedak,et al.  The impact of animal platforms on polar ocean observation , 2013 .

[108]  B. Block Physiological Ecology in the 21st Century: Advancements in Biologging Science1 , 2005, Integrative and comparative biology.

[109]  Fraser Davidson,et al.  Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland , 2010 .

[110]  Daniel P. Costa,et al.  Seals map bathymetry of the Antarctic continental shelf , 2010 .

[111]  Steven J. Bograd,et al.  Biologging technologies: new tools for conservation. Introduction , 2010 .

[112]  M. Hindell,et al.  Movement responses to environment: fast inference of variation among southern elephant seals with a mixed effects model , 2018, bioRxiv.

[113]  Kim Holland,et al.  Key Questions in Marine Megafauna Movement Ecology. , 2016, Trends in ecology & evolution.

[114]  Kevin C. Weng,et al.  Validation of geolocation estimates based on light level and sea surface temperature from electronic tags , 2004 .

[115]  F. Roquet,et al.  Observations of the Fawn Trough Current over the Kerguelen Plateau from instrumented elephant seals , 2009 .

[116]  Xavier Hoenner,et al.  Continental-scale animal tracking reveals functional movement classes across marine taxa , 2018, Scientific Reports.

[117]  Eric R. Dougherty,et al.  Suite of simple metrics reveals common movement syndromes across vertebrate taxa , 2017, Movement ecology.

[118]  F. Roquet,et al.  Large-scale circulation over and around the Northern Kerguelen Plateau , 2008 .

[119]  Jason Matthiopoulos,et al.  The generalized data management and collection protocol for Conductivity-Temperature-Depth Satellite Relay Data Loggers , 2015, Animal Biotelemetry.

[120]  F. Roquet,et al.  Seasonal Meandering of the Polar Front Upstream of the Kerguelen Plateau , 2018, Geophysical Research Letters.

[121]  T. Tamura,et al.  Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water , 2018, Science Advances.

[122]  I. Jonsen,et al.  Consequences of global shipping traffic for marine giants , 2018, Frontiers in Ecology and the Environment.

[123]  Daniel P. Costa,et al.  TOPP as a Marine Life Observatory: Using Electronic Tags to Monitor the Movements, Behaviour and Habitats of Marine Vertebrates , 2010 .

[124]  J. Aars,et al.  Sea ice resource selection models for polar bears in the Barents Sea subpopulation , 2018 .

[125]  Todd O'Brien,et al.  Autonomous Pinniped Environmental Samplers: Using Instrumented Animals as Oceanographic Data Collectors , 2001 .

[126]  S. Riser,et al.  The Argo Program : observing the global ocean with profiling floats , 2009 .

[127]  Ian D. Jonsen,et al.  Spatiotemporal modelling of marine movement data using Template Model Builder (TMB) , 2017 .

[128]  Helen Bailey,et al.  WhaleWatch: a dynamic management tool for predicting blue whale density in the California Current , 2017 .

[129]  Muhammad Akram Karimi,et al.  Tunable, Flexible Composite Magnets for Marine Monitoring Applications , 2018, Advanced Engineering Materials.

[130]  S. Cooke Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments , 2008 .

[131]  Justin M. J. Travis,et al.  The evolution of an ‘intelligent’ dispersal strategy: biased, correlated random walks in patchy landscapes , 2009 .

[132]  M. Fedak Marine animals as platforms for oceanographic sampling: a "win/win" situation for biology and operational oceanography , 2004 .

[133]  P. Langhorne,et al.  A method for correcting seal-borne oceanographic data and application to the estimation of regional sea ice thickness , 2018, Journal of Marine Systems.

[134]  Takeshi Tamura,et al.  Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya , 2013 .

[135]  Habitat use by green turtles (Chelonia mydas) nesting in Peninsular Malaysia: local and regional conservation implications. , 2009 .

[136]  Ian Jonsen,et al.  Supervised accelerometry analysis can identify prey capture by penguins at sea , 2014, Journal of Experimental Biology.

[137]  D. Costa,et al.  Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer , 2006, Proceedings of the National Academy of Sciences.

[138]  Michael P. Meredith,et al.  Technical Note: Animal-borne CTD-Satellite Relay Data Loggers for real-time oceanographic data collection , 2009 .

[139]  K. M. Schaefer,et al.  Tracking apex marine predator movements in a dynamic ocean , 2011, Nature.

[140]  Steven J. Cooke,et al.  Troubling issues at the frontier of animal tracking for conservation and management , 2017, Conservation biology : the journal of the Society for Conservation Biology.

[141]  Kim Whoriskey,et al.  A hidden Markov movement model for rapidly identifying behavioral states from animal tracks , 2016, Ecology and evolution.

[142]  Víctor M. Eguíluz,et al.  How Big Data Fast Tracked Human Mobility Research and the Lessons for Animal Movement Ecology , 2018, Front. Mar. Sci..

[143]  Anthony J Richardson,et al.  Encounter success of free-ranging marine predator movements across a dynamic prey landscape , 2006, Proceedings of the Royal Society B: Biological Sciences.

[144]  K. Kovacs,et al.  Winter sea ice melting in the Atlantic Water subduction area, Svalbard Norway , 2014 .

[145]  Steven J. Cooke,et al.  Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and Application , 2017 .

[146]  J. Kocik,et al.  Aquatic animal telemetry: A panoramic window into the underwater world , 2015, Science.

[147]  Marco Marengo,et al.  Flexible and Biofouling Independent Salinity Sensor , 2018, Advanced Materials Interfaces.

[148]  F. Roquet,et al.  Ocean observations using tagged animals , 2017 .

[149]  Nicolas E. Humphries,et al.  Environmental influence on the seasonal movements of satellite-tracked ocean sunfish Mola mola in the north-east Atlantic , 2016, Animal Biotelemetry.

[150]  M. Biuw,et al.  The ACC frontal system in the South Atlantic: Monitoring using merged Argo and animal-borne sensor data , 2008 .

[151]  F. Roquet,et al.  A Correction for the Thermal Mass–Induced Errors of CTD Tags Mounted on Marine Mammals , 2018, Journal of Atmospheric and Oceanic Technology.

[152]  Jonathan R. Potts,et al.  Integrated step selection analysis: bridging the gap between resource selection and animal movement , 2015, 1512.01614.

[153]  F. Roquet,et al.  Circulation and meltwater distribution in the Bellingshausen Sea: From shelf break to coast , 2016 .

[154]  Ian Stirling,et al.  Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. , 2008, Ecological applications : a publication of the Ecological Society of America.

[155]  Mike Fedak,et al.  Overcoming the Constraints of Long Range Radio Telemetry from Animals: Getting More Useful Data from Smaller Packages1 , 2002, Integrative and comparative biology.

[156]  O. Gaggiotti,et al.  Cultural traditions across a migratory network shape the genetic structure of southern right whales around Australia and New Zealand , 2015, Scientific Reports.

[157]  Hugh P. Possingham,et al.  The value of migration information for conservation prioritization of sea turtles in the Mediterranean , 2016 .

[158]  Ken Yoda,et al.  Foraging spots of streaked shearwaters in relation to ocean surface currents as identified using their drift movements , 2014 .

[159]  T. Tamura,et al.  The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay , 2016, Nature Communications.

[160]  F. Roquet,et al.  Delayed-Mode Calibration of Hydrographic Data Obtained from Animal-Borne Satellite Relay Data Loggers , 2011 .

[161]  Jane Hunter,et al.  An open Web-based system for the analysis and sharing of animal tracking data , 2015, Animal Biotelemetry.

[162]  M. Heupel,et al.  Diel patterns in three-dimensional use of space by sea snakes , 2015, Animal Biotelemetry.

[163]  I. Jonsen,et al.  Hierarchical influences of prey distribution on patterns of prey capture by a marine predator , 2017 .

[164]  M. Moreau,et al.  Intermittent search strategies , 2011, 1104.0639.

[165]  Horst Bornemann,et al.  Marine mammals exploring the oceans pole to pole: a review of the MEOP Consortium , 2017 .

[166]  C. Guinet,et al.  Measuring the Marine Soundscape of the Indian Ocean with Southern Elephant Seals Used as Acoustic Gliders of Opportunity , 2017 .

[167]  E. Hazen,et al.  Marine top predators as climate and ecosystem sentinels , 2019, Frontiers in Ecology and the Environment.

[168]  Wenqing Tang,et al.  QuikSCAT Satellite Comparisons with Nearshore Buoy Wind Data off the U.S. West Coast , 2003 .

[169]  B. McConnell,et al.  Movements of southern elephant seals , 1996 .

[170]  Roland Langrock,et al.  Estimation and simulation of foraging trips in land-based marine predators. , 2016, Ecology.