Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods.

The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, and perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0), non-self-consistent G0W0 based on several mean-field starting points, and a "beyond GW" second-order screened exchange (SOSEX) correction to G0W0. We also describe the implementation of the self-consistent Coulomb hole with screened exchange method (COHSEX), which serves as one of the mean-field starting points. The best performers overall are G0W0+SOSEX and G0W0 based on an IP-tuned long-range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments.

[1]  F. Weigend,et al.  Off-Diagonal Self-Energy Terms and Partially Self-Consistency in GW Calculations for Single Molecules: Efficient Implementation and Quantitative Effects on Ionization Potentials. , 2015, Journal of chemical theory and computation.

[2]  S. Louie,et al.  Renormalization of molecular electronic levels at metal-molecule interfaces. , 2006, Physical Review Letters.

[3]  D. Cowan,et al.  Interaction between the Orbitals of Lone Pair Electrons in Dicarbonyl Compounds , 1971 .

[4]  Alán Aspuru-Guzik,et al.  Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics , 2011 .

[5]  K. Shimada,et al.  Orbital density reconstruction for molecules. , 2011, Physical review letters.

[6]  R. T. McIver,et al.  Relative electron affinities of substituted benzophenones, nitrobenzenes, and quinones , 1985 .

[7]  Lucia Reining,et al.  Effect of self-consistency on quasiparticles in solids , 2006 .

[8]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[9]  C. Desfrançois,et al.  Electron binding to valence and multipole states of molecules: Nitrobenzene, para- and meta-dinitrobenzenes , 1999 .

[10]  L. Kronik,et al.  When to trust photoelectron spectra from Kohn-Sham eigenvalues: The case of organic semiconductors , 2009 .

[11]  J. Neaton,et al.  Quantitative molecular orbital energies within a G0W0 approximation , 2012, 1204.0509.

[12]  P. Umari,et al.  Valence electronic structure of the indene molecule: Experiment vs. GW calculations , 2011 .

[13]  Tsunetoshi Kobayashi Photoelectron spectra of p-benzoquinones , 1975 .

[14]  K. Prince,et al.  Valence electronic properties of porphyrin derivatives. , 2010, Physical chemistry chemical physics : PCCP.

[15]  J. V. Ortiz Electron propagator theory: an approach to prediction and interpretation in quantum chemistry , 2013 .

[16]  Susannah L. Scott,et al.  Electron affinities of benzo-, naphtho-, and anthraquinones determined from gas-phase equilibria measurements , 1988 .

[17]  P. W. Reinhardt,et al.  Mass spectrometry utilizing collisional ionization of cesium: Maleic anhydride and succinic anhydride , 1974 .

[18]  Angel Rubio,et al.  Self-consistent GW: an all-electron implementation with localized basis functions , 2013, 1304.4039.

[19]  Adrienn Ruzsinszky,et al.  Spurious fractional charge on dissociated atoms: pervasive and resilient self-interaction error of common density functionals. , 2006, The Journal of chemical physics.

[20]  L. Klasinc,et al.  Photoelectron spectra of acenes. Electronic structure and substituent effects , 1983 .

[21]  Jinlong Yang,et al.  On the electronic structures and electron affinities of the m-benzoquinone (BQ) diradical and the o-, p-BQ molecules: a synergetic photoelectron spectroscopic and theoretical study. , 2011, The journal of physical chemistry. A.

[22]  T. Körzdörfer On the relation between orbital-localization and self-interaction errors in the density functional theory treatment of organic semiconductors. , 2011, The Journal of chemical physics.

[23]  K. Thygesen,et al.  Design of two-photon molecular tandem architectures for solar cells by ab initio theory† †Electronic supplementary information (ESI) available: Visualizations of molecular orbitals, one-particle mechanisms and a table with Kohn–Sham eigenvalues. See DOI: 10.1039/c4sc03835e , 2015, Chemical science.

[24]  X. Blase,et al.  Many-body Green's function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide. , 2013, The Journal of chemical physics.

[25]  L. Reining,et al.  Strong interplay between structure and electronic properties in CuIn(S,Se){2}: a first-principles study. , 2010, Physical review letters.

[26]  G. Scuseria,et al.  Tests of functionals for systems with fractional electron number. , 2007, The Journal of chemical physics.

[27]  Yuchen Ma,et al.  Excited states of biological chromophores studied using many-body perturbation theory: Effects of resonant-antiresonant coupling and dynamical screening , 2009 .

[28]  San-Huang Ke,et al.  All-electron GW methods implemented in molecular orbital space: Ionization energy and electron affinity of conjugated molecules , 2010, 1012.1084.

[29]  E. Chen,et al.  Determination of the electron affinities of molecules using negative ion mass spectrometry , 1994 .

[30]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[31]  Alán Aspuru-Guzik,et al.  Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project , 2014 .

[32]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[33]  Angel Rubio,et al.  Unified description of ground and excited states of finite systems: The self-consistent GW approach , 2012, 1202.3547.

[34]  Noel M. O'Boyle,et al.  Computational Design and Selection of Optimal Organic Photovoltaic Materials , 2011 .

[35]  J. Muller,et al.  Ionisation Energies and the Electronic Structures of the N-oxides of Azanaphthalenes and azaanthracenes , 1975 .

[36]  B. Roos,et al.  Ab initio calculations and assignment of photoelectron spectra of maleic and succinic anhydride , 1974 .

[37]  J. Brédas,et al.  Impact of exact exchange in the description of the electronic structure of organic charge-transfer molecular crystals , 2014 .

[38]  First-principles description of charge transfer in donor-acceptor compounds from self-consistent many-body perturbation theory , 2014, 1409.6196.

[39]  A. Schweig,et al.  Assignment of the four lowest ionized states of p-benzoquinone and the question of , 1975 .

[40]  M. Scheffler,et al.  Beyond the GW approximation: A second-order screened exchange correction , 2015 .

[41]  Lukas Gallandi,et al.  Long-Range Corrected DFT Meets GW: Vibrationally Resolved Photoelectron Spectra from First Principles. , 2015, Journal of chemical theory and computation.

[42]  Lucia Reining,et al.  Understanding correlations in vanadium dioxide from first principles. , 2007, Physical review letters.

[43]  G. Distefano,et al.  Photoelectron spectra of 1,2-indandione, 1,3-indandione and heterocyclic analogues , 1977 .

[44]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[45]  A. Tkatchenko,et al.  Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions , 2012, 1201.0655.

[46]  T. Kobayoshi A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes , 1978 .

[47]  K. Thygesen,et al.  Computational screening of functionalized zinc porphyrins for dye sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[48]  Matthias Scheffler,et al.  Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions , 2009, J. Comput. Phys..

[49]  James R. Chelikowsky,et al.  First-principles GW-BSE excitations in organic molecules , 2005 .

[50]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[51]  G. Scuseria,et al.  Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. , 2006, The Journal of chemical physics.

[52]  Mathew D. Halls,et al.  Virtual screening of electron acceptor materials for organic photovoltaic applications , 2013 .

[53]  X. Blase,et al.  Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach. , 2014, Journal of chemical theory and computation.

[54]  K. Thygesen,et al.  Renormalization of optical excitations in molecules near a metal surface. , 2011, Physical review letters.

[55]  M. Dewar,et al.  Photoelectron Spectra of Molecules. I. Ionization Potentials of Some Organic Molecules and Their Interpretation , 1969 .

[56]  A. Tkatchenko,et al.  Electronic structure of dye-sensitized TiO 2 clusters from many-body perturbation theory , 2011 .

[57]  P. Kebarle,et al.  Electron affinities of cyclic unsaturated dicarbonyls: maleic anhydrides, maleimides, and cyclopentenedione , 1989 .

[58]  S. McGlynn,et al.  Photoelectron spectroscopy of carbonyls. 1,4-benzoquinones , 1977 .

[59]  R. Baer,et al.  Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles. , 2009, The Journal of chemical physics.

[60]  Fabien Bruneval,et al.  Benchmarking the Starting Points of the GW Approximation for Molecules. , 2013, Journal of chemical theory and computation.

[61]  Takeshi Kawase,et al.  Data mining with molecular design rules identifies new class of dyes for dye-sensitised solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[62]  Matthias Scheffler,et al.  Numeric atom-centered-orbital basis sets with valence-correlation consistency from H to Ar , 2013 .

[63]  H. Gray,et al.  Electron-transfer reorganization energies of isolated organic molecules , 2002 .

[64]  Michel Côté,et al.  Designing Polymers for Photovoltaic Applications Using ab Initio Calculations , 2013 .

[65]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[66]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[67]  Leeor Kronik,et al.  Valence electronic structure of gas-phase 3,4,9,10-perylene tetracarboxylic acid dianhydride: Experiment and theory , 2006 .

[68]  M. L. Cohen,et al.  High accuracy many-body calculational approaches for excitations in molecules. , 2000, Physical review letters.

[69]  S. Baroni,et al.  GW quasiparticle spectra from occupied states only , 2009, 0910.0791.

[70]  G. Hutchison,et al.  Efficient Computational Screening of Organic Polymer Photovoltaics. , 2013, The journal of physical chemistry letters.

[71]  Roi Baer,et al.  Tuned range-separated hybrids in density functional theory. , 2010, Annual review of physical chemistry.

[72]  P Boulanger,et al.  Excited states properties of organic molecules: from density functional theory to the GW and Bethe–Salpeter Green's function formalisms , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[73]  James R. Chelikowsky,et al.  Optical spectra and exchange-correlation effects in molecular crystals , 2008, 0802.3168.

[74]  Sabine Körbel,et al.  Benchmark Many-Body GW and Bethe-Salpeter Calculations for Small Transition Metal Molecules. , 2014, Journal of chemical theory and computation.

[75]  Self-interaction in Green's-function theory of the hydrogen atom , 2007, cond-mat/0701592.

[76]  P R C Kent,et al.  Neutral and charged excitations in carbon fullerenes from first-principles many-body theories. , 2008, The Journal of chemical physics.

[77]  Huy V. Nguyen,et al.  GW calculations using the spectral decomposition of the dielectric matrix: Verification, validation, and comparison of methods , 2013 .

[78]  K. Jacobsen,et al.  Fully self-consistent GW calculations for molecules , 2010, 1001.1274.

[79]  J. V. Ortiz,et al.  Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules I. Reference Data at the CCSD(T) Complete Basis Set Limit. , 2016, Journal of chemical theory and computation.

[80]  K. Seki,et al.  Ultraviolet photoelectron spectra of tetrahalogeno-p-benzoquinones and hexahalogenobenzenes in the solid state , 1981 .

[81]  R. Weinkauf,et al.  Resonant photodetachment via shape and Feshbach resonances: p-benzoquinone anions as a model system , 1999 .

[82]  N. Hush,et al.  Binding energies of π- and “lone-pair”-levels in mono- and diaza-phenanthrenes and anthracenes: An He(I) photoelectron spectroscopic study , 1975 .

[83]  G. Welch,et al.  Design and computational characterization of non-fullerene acceptors for use in solution-processable solar cells. , 2014, The journal of physical chemistry. A.

[84]  Jean-Luc Brédas,et al.  Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals. , 2014, Accounts of chemical research.

[85]  X. Blase,et al.  Charge-transfer excitations in molecular donor-acceptor complexes within the many-body Bethe-Salpeter approach , 2011, 1109.0824.

[86]  Holm,et al.  Self-consistent GW0 results for the electron gas: Fixed screened potential W0 within the random-phase approximation. , 1996, Physical review. B, Condensed matter.

[87]  Adrienn Ruzsinszky,et al.  Density functionals that are one- and two- are not always many-electron self-interaction-free, as shown for H2+, He2+, LiH+, and Ne2+. , 2007, The Journal of chemical physics.

[88]  A. Tkatchenko,et al.  Size Effects in the Interface Level Alignment of Dye-Sensitized TiO2 Clusters. , 2014, The journal of physical chemistry letters.

[89]  L. Kronik,et al.  Erratum: When to trust photoelectron spectra from Kohn-Sham eigenvalues: The case of organic semiconductors [Phys. Rev. B79, 201205 (2009)] , 2010 .

[90]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[91]  C. R. Brundle,et al.  Perfluoro effect in photoelectron spectroscopy. II. Aromatic molecules , 1972 .

[92]  Patrick Rinke,et al.  Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules II: Non-Empirically Tuned Long-Range Corrected Hybrid Functionals. , 2016, Journal of chemical theory and computation.

[93]  K. Kimura,et al.  Photoelectron angular distribution and assignments of photoelectron spectra of nitrogen dioxide, nitromethane and nitrobenzene , 1982 .

[94]  Jean-Luc Brédas,et al.  Assessment of the performance of tuned range-separated hybrid density functionals in predicting accurate quasiparticle spectra , 2012 .

[95]  G. Scuseria,et al.  Assessment of a long-range corrected hybrid functional. , 2006, The Journal of chemical physics.

[96]  Noa Marom,et al.  Strategy for finding a reliable starting point for G 0 W 0 demonstrated for molecules , 2012 .

[97]  C. Hogan,et al.  Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation. , 2009, The Journal of chemical physics.

[98]  R. Sakuma,et al.  GW approximation with self-screening correction , 2011, 1110.6765.

[99]  Claudio Attaccalite,et al.  First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications , 2010, 1011.3933.

[100]  P. Kebarle,et al.  Electron affinities of aza-substituted polycyclic aromatic hydrocarbons , 1989 .

[101]  R. Egdell,et al.  Photoelectron spectra of substituted benzenes , 1975 .

[102]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[103]  Improved quasiparticle wave functions and mean field for G(0)W(0) calculations: Initialization with the COHSEX operator , 2014 .

[104]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[105]  Erich Runge,et al.  First-principles GW calculations for DNA and RNA nucleobases , 2011, 1101.3738.

[106]  R. Baer,et al.  Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory. , 2009, Journal of the American Chemical Society.

[107]  K. Thygesen,et al.  Optimizing porphyrins for dye sensitized solar cells using large-scale ab initio calculations. , 2014, Physical chemistry chemical physics : PCCP.

[108]  W. Klopper,et al.  Coupled-cluster reference values for the GW27 and GW100 test sets for the assessment of GW methods , 2015 .

[109]  T. Heinis,et al.  Entropy changes and electron affinities from gas-phase electron-transfer equilibria: A- + B = A + B- , 1986 .

[110]  J. V. Ortiz,et al.  Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules IV: Electron-Propagator Methods. , 2016, Journal of chemical theory and computation.

[111]  J. Brédas,et al.  A multimode analysis of the gas-phase photoelectron spectra in oligoacenes. , 2004, The Journal of chemical physics.

[112]  Photoelectron properties of DNA and RNA bases from many-body perturbation theory , 2011, 1107.1833.

[113]  R. Compton,et al.  Negative ion properties of fluoranil, chloranil, and bromanil: Electron affinities , 1978 .

[114]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[115]  J. Rabalais Photoelectron Spectroscopic Investigation of the Electronic Structure of Nitromethane and Nitrobenzene , 1972 .

[116]  M. L. Tiago,et al.  Many-body electronic structure and Kondo properties of Co- , 2009, 0905.2777.

[117]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .