Parameter Identification and Model Validation for the Piezoelectric Actuator in an Inertia Motor
暂无分享,去创建一个
Piezoelectric inertia motors make use of the inertia of a slider to drive the slider by friction contact in a series of small steps which are generally composed of a stick phase and a slip phase. If the best electrical drive signal for the piezoelectric actuator in an inertia motor is to be determined, its dynamical behaviour must be known. A classic dynamic lumped parameter model for piezoelectric actuators is valid only in resonance and, therefore, is not suitable for modelling the actuator in an inertia motor. A reduced dynamic model is used instead. Its parameters are identified using a step response measurement. This model is used to predict the movement of the actuator in response to a velocity-optimized signal introduced in a separate contribution. Results show that the model cannot represent the dynamical characteristics of the actuator completely. For determining voltage signals that let piezoelectric actuators follow a calculated movement pattern exactly, the model can, therefore, only be used with limitations.