Time To Contact for Obstacle Avoidance

Time to Contact (TTC) is a biologically inspired method for obstacle detection and reactive control of motion that does not require scene reconstruction or 3D depth estimation. TTC is a measure of distance expressed in time units. Our results show that TTC can be used to provide reactive obstacle avoidance for local navigation. In this paper we describe the principles of time to contact and show how time to contact can be measured from the rate of change of size of features. We show an algorithm for steering a vehicle using TTC to avoid obstacles while approaching a goal. We present the results of experiments for obstacle avoidance using TTC in static and dynamic environments.

[1]  B.K.P. Horn,et al.  Time to Contact Relative to a Planar Surface , 2007, 2007 IEEE Intelligent Vehicles Symposium.

[2]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[3]  Pierre Bessière,et al.  Proscriptive Bayesian programming application for collision avoidance , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[4]  Manolis I. A. Lourakis,et al.  Using planar parallax to estimate the time-to-contact , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[5]  Giulio Sandini,et al.  Visual Behaviors for Docking , 1997, Comput. Vis. Image Underst..

[6]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[7]  François G. Meyer Time-to-collision from first-order models of the motion field , 1994, IEEE Trans. Robotics Autom..

[8]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[9]  Wendelin Feiten,et al.  Robust obstacle avoidance in unknown and cramped environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[10]  Nicola Ancona,et al.  Optical flow from 1-D correlation: Application to a simple time-to-crash detector , 1993, 1993 (4th) International Conference on Computer Vision.

[11]  Giulio Sandini,et al.  On the Advantages of Polar and Log-Polar Mapping for Direct Estimation of Time-To-Impact from Optical Flow , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  R. Cipolla,et al.  Surface Orientation and Time to Contact from Image Divergence and Deformation , 1992, ECCV.

[13]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[14]  R. Chattergy,et al.  Some Heuristics for the Navigation of a Robot , 1985 .

[15]  James L. Crowley,et al.  Navigation for an intelligent mobile robot , 1985, IEEE J. Robotics Autom..

[16]  Carme Torras,et al.  3D Object Reconstruction from Swissranger Sensor Data using a Spring-mass Model , 2009, VISAPP.

[17]  Amaury Nègre Evitement d'obstacles par invariants visuels , 2009 .

[18]  Amaury Nègre,et al.  Scale Invariant Detection and Tracking of Elongated Structures , 2008, ISER.

[19]  Amaury Nègre,et al.  Real-Time Time-to-Collision from Variation of Intrinsic Scale , 2006, ISER.

[20]  Alberto Del Bimbo,et al.  Generalized bounds for time to collision from first-order image motion , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.