Investigating dynamic coupling in geospace through the combined use of modeling, simulations and data analysis

Comprehensive understanding of the dynamics of the coupled solar wind-magnetosphere-ionosphere system is of utmost interest, both from the perspective of solar system astrophysics and geophysics research and from the perspective of space applications. The physical processes involved in the dynamical evolution of this complex coupled system are pertinent not only for the Sun-Earth connection, but also for major phenomena in other astrophysical systems. Furthermore, the conditions in geospace collectively termed space weather affect the ever increasing technological assets of mankind in space and therefore need to be understood, quantified and efficiently forecasted. The present collaborative paper communicates recent advances in geospace dynamic coupling research through modeling, simulations and data analysis and discusses future directions.

[1]  D. Baker,et al.  Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms , 1998 .

[2]  D. Baker,et al.  Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations , 2006 .

[3]  W. J. Burke,et al.  Dynamics of the inner magnetosphere near times of substorm onsets , 1996 .

[4]  Xinlin Li,et al.  Modeling energetic particle injections in dynamic pulse fields with varying propagation speeds , 2002 .

[5]  T. Pulkkinen,et al.  Hysteresis in solar wind power input to the magnetosphere , 2006 .

[6]  D. Vassiliadis,et al.  Intense space storms: Critical issues and open disputes , 2003 .

[7]  N. Tsyganenko A magnetospheric magnetic field model with a warped tail current sheet , 1989 .

[8]  D. Stern The motion of a proton in the equatorial magnetosphere , 1975 .

[9]  Pekka Janhunen,et al.  Assessment of ionospheric Joule heating by GUMICS-4 MHD simulation, AMIE, and satellite-based statistics: towards a synthesis , 2005 .

[10]  Lou‐Chuang Lee,et al.  Energy coupling function and solar wind‐magnetosphere dynamo , 1979 .

[11]  A. Belehaki,et al.  An upgrade of the solar-wind-driven empirical model for the middle latitude ionospheric storm-time response , 2008 .

[12]  G. Consolini,et al.  Fractal time statistics of AE-index burst waiting times: evidence of metastability , 2002 .

[13]  I. Daglis,et al.  Particle acceleration in the frame of the storm-substorm relation , 2004, IEEE Transactions on Plasma Science.

[14]  Anna Milillo,et al.  Evolution of the proton ring current energy distribution during 21–25 April 2001 storm , 2006 .

[15]  H. Volland A semiempirical model of large‐scale magnetospheric electric fields , 1973 .

[16]  C. Reigber Earth Observation with CHAMP : Results from Three Years in Orbit , 2005 .

[17]  S. Maus,et al.  Wavelet Analysis of CHAMP Flux Gate Magnetometer Data , 2005 .

[18]  J. Lilensten Space weather : research towards applications in Europe , 2007 .

[19]  A. V. Mikhailov,et al.  Short-Term fo F2 Forecast: Present Day State of Art , 2007 .

[20]  Georgios Balasis,et al.  From pre-storm activity to magnetic storms: A transition described in terms of fractal dynamics , 2006 .

[21]  H. Koskinen,et al.  Ionospheric energy input as a function of solar wind parameters: global MHD simulation results , 2004 .

[22]  Theodore A. Fritz,et al.  Role of substorm-associated impulsive electric fields in the ring current development during storms , 2005 .

[23]  M. Liemohn,et al.  Lognormal form of the ring current energy content , 2003 .

[24]  W. I. Axford,et al.  Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail , 1996 .

[25]  E. A. Araujo-Pradere,et al.  STORM: An empirical storm‐time ionospheric correction model 2. Validation , 2002 .

[26]  J. Sauvaud,et al.  Dynamics of single‐particle orbits during substorm expansion phase , 1990 .

[27]  Anna Belehaki,et al.  On the occurrence of storm-induced nighttime ionization enhancements at ionospheric middle latitudes , 2002 .

[28]  A. Sharma,et al.  Modeling substorm dynamics of the magnetosphere: from self-organization and self-organized criticality to nonequilibrium phase transitions. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  A. Milillo,et al.  Empirical model of proton fluxes in the equatorial inner magnetosphere: Development , 2001 .

[30]  I. Tsagouri,et al.  Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms , 2000 .

[31]  F. Frutos-Alfaro,et al.  Ion composition of substorms during storm-time and non-storm-time periods , 2002 .

[32]  T. Pulkkinen,et al.  Stormtime energy transfer in global MHD simulation , 2003 .

[33]  Pekka Janhunen,et al.  GUMICS-3 A Global Ionosphere-Magnetosphere Coupling Simulation with High Ionospheric Resolution , 1996 .

[34]  Georgios Balasis,et al.  The SGR 1806-20 magnetar signature on the Earth's magnetic field , 2006 .

[35]  Timothy Fuller-Rowell,et al.  STORM: An empirical storm‐time ionospheric correction model 1. Model description , 2002 .

[36]  Ljiljana R. Cander,et al.  Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters , 2002 .

[37]  T. Pulkkinen,et al.  Magnetopause energy and mass transfer: results from a global MHD simulation , 2006 .

[38]  J. Fedder,et al.  Impulsive enhancements of oxygen ions during substorms , 2006 .

[39]  H. Hayakawa,et al.  Statistical nature of impulsive electric fields associated with fast ion flow in the near-Earth plasma sheet , 2000 .

[40]  Patricia H. Reiff,et al.  Empirical polar cap potentials , 1997 .

[41]  P. Muhtarov,et al.  Modeling of midlatitude F region response to geomagnetic activity , 2001 .

[42]  I. Tsagouri,et al.  A new empirical model of middle latitude ionospheric response for space weather applications , 2006 .

[43]  J. Borovsky,et al.  Dominant role of the asymmetric ring current in producing the stormtime , 2001 .