FAST SEGMENTATION-BASED DENSE STEREO FROM QUASI-DENSE MATCHING

We propose a segmentation-based dense stereo algorithm within an energy minimization framework. The cost function includes a new consistency term to take into account an initial quasi-dense disparity map and handles occlusions explicitly. Based on quasi-dense matching and color segmentation, optimization is performed efficiently by assuming a constant disparity for each region. The assumption is made robust by over-segmentation and a dynamic region splitting method done by graph cut. The efficiency and accuracy of the algorithm are demonstrated on standard stereo data. Experiment results show that the algorithm compares favorably with other state-of-the-art stereo algorithms.

[1]  Cornelius W. A. M. van Overveld,et al.  Dense Structure-from-Motion: An Approach Based on Segment Matching , 2002, ECCV.

[2]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[3]  Zhengyou Zhang,et al.  A Progressive Scheme for Stereo Matching , 2000, SMILE.

[4]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Carlo Tomasi,et al.  Multiway cut for stereo and motion with slanted surfaces , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[9]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[11]  Hai Tao,et al.  A global matching framework for stereo computation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[12]  Long Quan,et al.  Match Propagation for Image-Based Modeling and Rendering , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Olga Veksler,et al.  Fast variable window for stereo correspondence using integral images , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[14]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[15]  Carlo Tomasi,et al.  Surfaces with occlusions from layered stereo , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Takeo Kanade,et al.  A Cooperative Algorithm for Stereo Matching and Occlusion Detection , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[18]  Olga Veksler Stereo Matching by Compact Windows via Minimum Ratio Cycle , 2001, ICCV.