Robust output-feedback integral MPC: a probabilistic approach

In this paper a new approach for robust output-feedback control is presented. The approach consists of a combination of a Kalman filter and a finite-horizon MPC into one min-max (worst-case) optimization problem. The class of uncertainties considered is quite general as it is only assumed that the system matrices remain bounded over all uncertainties. In order to solve the underlying optimization problem an iterative approach is developed in a probabilistic framework.

[1]  Michel Verhaegen,et al.  An ellipsoid algorithm for probabilistic robust controller design , 2003, Syst. Control. Lett..

[2]  O. Toker,et al.  On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[3]  A. Garulli,et al.  Output-feedback predictive control of constrained linear systems via set-membership state estimation , 2000 .

[4]  T. Badgwell Robust model predictive control of stable linear systems , 1997 .

[5]  Giuseppe Carlo Calafiore,et al.  Radial and Uniform Distributions in Vector and Matrix Spaces for Probabilistic Robustness , 1999 .

[6]  Augusto Ferrante,et al.  Explicit formulas for LMI-based H2 filtering and deconvolution , 2001, Autom..

[7]  Alberto Bemporad,et al.  Model predictive control based on linear programming - the explicit solution , 2002, IEEE Transactions on Automatic Control.

[8]  Giuseppe Carlo Calafiore,et al.  Randomized algorithms for probabilistic robustness with real and complex structured uncertainty , 2000, IEEE Trans. Autom. Control..

[9]  Giuseppe Carlo Calafiore,et al.  Stochastic algorithms for exact and approximate feasibility of robust LMIs , 2001, IEEE Trans. Autom. Control..

[10]  Edoardo Mosca,et al.  Min-max predictive control strategies for input-saturated polytopic uncertain systems , 2000, Autom..

[11]  Roberto Tempo,et al.  Probabilistic robust design with linear quadratic regulators , 2001, Syst. Control. Lett..

[12]  C. Mohtadi,et al.  Properties of generalized predictive control , 1987, Autom..

[13]  M. Kothare,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.