The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks.

[1]  Jose M. G. Vilar,et al.  Modeling network dynamics: the lac operon, a case study , 2004 .

[2]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Leibler,et al.  DNA looping and physical constraints on transcription regulation. , 2003, Journal of molecular biology.

[4]  Andreas Wagner,et al.  Convergent evolution of gene circuits , 2003, Nature Genetics.

[5]  Uri Alon,et al.  Response delays and the structure of transcription networks. , 2003, Journal of molecular biology.

[6]  U. Alon,et al.  Detailed map of a cis-regulatory input function , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Nicolas E. Buchler,et al.  On schemes of combinatorial transcription logic , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[9]  S. Teichmann,et al.  Evolution of transcription factors and the gene regulatory network in Escherichia coli. , 2003, Nucleic acids research.

[10]  U. Alon,et al.  Negative autoregulation speeds the response times of transcription networks. , 2002, Journal of molecular biology.

[11]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[12]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[13]  U. Alon,et al.  Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  L. Chodosh,et al.  Hlx is induced by and genetically interacts with T-bet to promote heritable TH1 gene induction , 2002, Nature Immunology.

[15]  Eric H Davidson,et al.  A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. , 2002, Developmental biology.

[16]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[17]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[18]  U. Alon,et al.  Ordering Genes in a Flagella Pathway by Analysis of Expression Kinetics from Living Bacteria , 2001, Science.

[19]  K. Helin,et al.  Apaf-1 is a transcriptional target for E2F and p53 , 2001, Nature Cell Biology.

[20]  O. Hobert,et al.  A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. , 2001, Development.

[21]  Michael A. Savageau,et al.  Design principles for elementary gene circuits: Elements, methods, and examples. , 2001, Chaos.

[22]  Julio Collado-Vides,et al.  RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12 , 2001, Nucleic Acids Res..

[23]  C. Rao,et al.  Control motifs for intracellular regulatory networks. , 2001, Annual review of biomedical engineering.

[24]  R. Schleif Regulation of the L-arabinose operon of Escherichia coli. , 2000, Trends in genetics : TIG.

[25]  P D Karp,et al.  Global properties of the metabolic map of Escherichia coli. , 2000, Genome research.

[26]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[27]  Christopher C. Moser,et al.  Natural engineering principles of electron tunnelling in biological oxidation–reduction , 1999, Nature.

[28]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[29]  M. Chalfie,et al.  Regulation of touch receptor differentiation by the Caenorhabditis elegans mec-3 and unc-86 genes. , 1998, Development.

[30]  E. Davidson,et al.  Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. , 1998, Science.

[31]  A. Arkin,et al.  Simulation of prokaryotic genetic circuits. , 1998, Annual review of biophysics and biomolecular structure.

[32]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[33]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[34]  S Falkow,et al.  FACS-optimized mutants of the green fluorescent protein (GFP). , 1996, Gene.

[35]  C. M. Johnson,et al.  In vivo induction kinetics of the arabinose promoters in Escherichia coli , 1995, Journal of bacteriology.

[36]  R F Schleif,et al.  DNA looping and unlooping by AraC protein , 1990, Science.

[37]  J. White,et al.  Neuronal connectivity in Caenorhabditis elegans , 1985, Trends in Neurosciences.

[38]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[39]  M A Savageau,et al.  Design of molecular control mechanisms and the demand for gene expression. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Casadaban,et al.  Regulation of the regulatory gene for the arabinose pathway, araC. , 1976, Journal of molecular biology.

[41]  M A Savageau,et al.  Genetic regulatory mechanisms and the ecological niche of Escherichia coli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Wilcox,et al.  Regulation of the L-arabinose operon BAD in vitro. , 1974, The Journal of biological chemistry.

[43]  D. Zipser,et al.  The lactose operon , 1970 .