Solar power technology for electricity generation: A critical review

[1]  Lan Xiao,et al.  A parabolic dish/AMTEC solar thermal power system and its performance evaluation , 2010 .

[2]  Vijay Devabhaktuni,et al.  Solar energy: Trends and enabling technologies , 2013 .

[3]  Markus Eck,et al.  Dual Receiver Concept for Solar Towers up to 100MW , 2006 .

[4]  Reyhaneh Loni,et al.  Thermal and exergy performance of a nanofluid-based solar dish collector with spiral cavity receiver , 2018 .

[5]  Yiding Cao,et al.  Convection heat loss from cavity receiver in parabolic dish solar thermal power system: A review , 2010 .

[6]  Akiba Segal,et al.  Optimized working temperatures of a solar central receiver , 2003 .

[7]  María José Montes,et al.  Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration , 2018 .

[8]  Peter Schwarzbözl,et al.  Solar-Hybrid Gas Turbine-based Power Tower Systems (REFOS)* , 2001 .

[9]  T. V. Narayanan,et al.  Conceptual design of an advanced water/steam receiver for a solar thermal central power system , 1981 .

[10]  A. Bejan Unification of Three Different Theories Concerning the Ideal Conversion of Enclosed Radiation , 1987 .

[11]  V. Venkatraj,et al.  Thermal losses in central receiver solar thermal power plant , 2018, IOP Conference Series: Materials Science and Engineering.

[12]  Sendhil Kumar Natarajan,et al.  Comparison of receivers for solar dish collector system , 2008 .

[13]  A. Carotenuto,et al.  Heat exchange in a multi-cavity volumetric solar receiver , 1991 .

[14]  H.J.J. Janssen,et al.  Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses , 2011 .

[15]  İbrahim Halil Yılmaz,et al.  Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review , 2018, Applied Energy.

[16]  Mariano Martín,et al.  Optimal year-round operation of a concentrated solar energy plant in the south of Europe , 2013 .

[17]  Daniel H. Loughlin,et al.  Global climate change: The quantifiable sustainability challenge , 2014, Journal of the Air & Waste Management Association.

[18]  Tara C. Kandpal,et al.  Optical design and concentration characteristics of linear Fresnel reflector solar concentrators—I. Mirror elements of varying width , 1991 .

[19]  G. Kumaresan,et al.  Performance studies of a solar parabolic trough collector with a thermal energy storage system , 2012 .

[20]  L. Valenzuela,et al.  Influence of the displacement of solar receiver tubes on the performance of a parabolic-trough collector , 2018, Energy.

[21]  L. Savoldi,et al.  Analysis of the performance of linear Fresnel collectors: Encapsulated vs. evacuated tubes , 2018 .

[22]  Farrokh Mistree,et al.  A conceptual basis for the design of parabolic troughs for different design environments , 1986 .

[23]  Jong-Kyu Kim,et al.  Simplified heat loss model for central tower solar receiver , 2015 .

[24]  Nor Mariah Adam,et al.  Prospective scenarios for the full solar energy development in Malaysia , 2010 .

[25]  Gopalakrishnan Srilakshmi,et al.  Challenges and opportunities for Solar Tower technology in India , 2015 .

[27]  E. Bellos,et al.  Optical and thermal analysis of a linear Fresnel reflector operating with thermal oil, molten salt and liquid sodium , 2018 .

[28]  Panna Lal Singh,et al.  Heat loss study of trapezoidal cavity absorbers for linear solar concentrating collector , 2010 .

[29]  B. Ghobadian,et al.  Numerical comparison of a solar dish concentrator with different cavity receivers and working fluids , 2018, Journal of Cleaner Production.

[30]  Manish Kumar,et al.  Performance assessment and degradation analysis of solar photovoltaic technologies: A review , 2017 .

[31]  Jinjia Wei,et al.  Thermal performance simulation of a solar cavity receiver under windy conditions , 2011 .

[32]  T. C. Kandpal,et al.  Designs and performance characteristics of a linear fresnel reflector solar concentrator with a flat vertical absorber , 1990 .

[33]  Evangelos Bellos,et al.  Optimum number of internal fins in parabolic trough collectors , 2018, Applied Thermal Engineering.

[34]  E. Papanicolaou,et al.  Experimental investigation of the daily performance of an integrated linear Fresnel reflector system , 2018, Solar Energy.

[35]  F. W. Lipps,et al.  A solar flux density calculation for a solar tower concentrator using a two-dimensional Hermite function expansion , 1977 .

[36]  Naichia Yeh,et al.  Optical geometry approach for elliptical Fresnel lens design and chromatic aberration , 2009 .

[37]  P. Stroeve,et al.  Innovation in concentrated solar power , 2011 .

[38]  P. Bannister,et al.  Maximization of Exergy Gain in High Temperature Solar Thermal Receivers by Choice of Pipe Radius , 1991 .

[39]  G. C. Bakos,et al.  Solar aided power generation of a 300 MW lignite fired power plant combined with line-focus parabolic trough collectors field , 2013 .

[40]  Ashmore Mawire,et al.  Experimental energy and exergy performance of a solar receiver for a domestic parabolic dish concentrator for teaching purposes , 2014 .

[41]  J. ERICSSON The Sun Motor and the Sun's Temperature , 1884, Nature.

[42]  Gianluca Coccia,et al.  Mathematical modeling of a prototype of parabolic trough solar collector , 2012 .

[43]  Weidong Huang,et al.  Performance analysis and optimization of an integrated azimuth tracking solar tower , 2018, Energy.

[45]  Jan F. Kreider,et al.  Solar energy handbook , 1981 .

[46]  Roberto Grena,et al.  Solar linear Fresnel collector using molten nitrates as heat transfer fluid , 2011 .

[47]  Minlin Yang,et al.  Heat transfer enhancement and performance of the molten salt receiver of a solar power tower , 2010 .

[48]  Yuehong Su,et al.  Design and experimental analysis of a cylindrical compound Fresnel solar concentrator , 2014 .

[49]  Panna Lal Singh,et al.  Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers , 2010 .

[50]  R. Abbas,et al.  Solar radiation concentration features in Linear Fresnel Reflector arrays , 2012 .

[51]  M. R. Riaz A Theory of Concentrators of Solar Energy on a Central Receiver for Electric Power Generation , 1975 .

[52]  F. R. Pazheri,et al.  A review on global renewable electricity scenario , 2014 .

[53]  Zhao Xin-gang,et al.  Cost-benefit evolution for concentrated solar power in China , 2018, Journal of Cleaner Production.

[54]  D. Štreimikienė,et al.  Environmental Assessment of a Solar Tower Using the Life Cycle Assessment (LCA) , 2018 .

[55]  Luis M. Serra,et al.  Environmental evaluation of dish-Stirling technology for power generation , 2012 .

[56]  Jincan Chen,et al.  Efficiency bound of a solar-driven Stirling heat engine system , 1998 .

[57]  S. C. Kaushik,et al.  State-of-the-art of solar thermal power plants—A review , 2013 .

[58]  Loreto Valenzuela,et al.  Impact of pressure losses in small-sized parabolic-trough collectors for direct steam generation , 2013 .

[59]  R. Margolis,et al.  U.S. Solar Photovoltaic System Cost Benchmark: Q1 2018 , 2016 .

[60]  Ahmed M. Soliman,et al.  Solar parabolic dish Stirling engine system design, simulation, and thermal analysis , 2016 .

[61]  Ki-Hyun Kim,et al.  Solar energy: Potential and future prospects , 2018 .

[62]  María José Montes,et al.  Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers , 2012 .

[63]  Basil F. Ali Theoretical study of main factors affecting the heliostat field design of tower power plant , 1990 .

[64]  A. Barbón,et al.  Parametric study of the small scale linear Fresnel reflector , 2018 .

[65]  Robert Pitz-Paal,et al.  Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators , 2006 .

[66]  Edris Pouresmaeil,et al.  A Centralized Smart Decision-Making Hierarchical Interactive Architecture for Multiple Home Microgrids in Retail Electricity Market , 2018, Energies.

[67]  Tie Li,et al.  Study on the radiation flux and temperature distributions of the concentrator–receiver system in a solar dish/Stirling power facility , 2011 .

[68]  Gianluca Coccia,et al.  Adoption of nanofluids in low-enthalpy parabolic trough solar collectors: Numerical simulation of the yearly yield , 2016 .

[69]  A. Carotenuto,et al.  Thermal behaviour of a multi-cavity volumetric solar receiver: Design and tests results , 1993 .

[70]  E. Bellos,et al.  Multi-criteria evaluation of a nanofluid-based linear Fresnel solar collector , 2018 .

[71]  Kenneth Hansen,et al.  Comprehensive assessment of the role and potential for solar thermal in future energy systems , 2018, Solar Energy.

[72]  Felix Tellez,et al.  Central Receiver System Solar Power Plant Using Molten Salt as Heat Transfer Fluid , 2008 .

[73]  Ramchandra G. Patil,et al.  Alternative designs of evacuated receiver for parabolic trough collector , 2018, Energy.

[74]  Hulin Huang,et al.  Design and thermal performances of Semi-Parabolic Linear Fresnel Reflector solar concentration collector , 2014 .

[75]  F. Biggs,et al.  An Analysis of the Influence of Geography and Weather on Parabolic Trough Solar Collector Design , 1981 .

[76]  Zheng Hongfei,et al.  A new trough solar concentrator and its performance analysis , 2011 .

[77]  Tara C. Kandpal,et al.  Optical and thermal performance evaluation of a linear fresnel reflector solar concentrator , 1989 .

[78]  Shireesh B. Kedare,et al.  Investigations on heat losses from a solar cavity receiver , 2009 .

[79]  M. R. Rodríguez-Sánchez,et al.  Thermal design guidelines of solar power towers , 2014 .

[80]  Zhifeng Wang,et al.  Modeling and simulation of the pioneer 1 MW solar thermal central receiver system in China , 2009 .

[81]  M. R. Rodríguez-Sánchez,et al.  District cooling network connected to a solar power tower. , 2015 .

[82]  A. M. Clausing,et al.  An analysis of convective losses from cavity solar central receivers , 1981 .

[83]  J. Solano,et al.  Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids , 2016 .

[84]  Chuck Kutscher,et al.  History, current state, and future of linear Fresnel concentrating solar collectors , 2014 .

[85]  Eduardo Zarza,et al.  Parabolic-trough solar collectors and their applications , 2010 .

[86]  Miguel Castilla,et al.  Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013 , 2015 .

[87]  L. C. Spencer A comprehensive review of small solar-powered heat engines. Part I. A history of solar-powered devices up to 1950 , 1989 .

[88]  Manish Kumar,et al.  An efficient parameters extraction technique of photovoltaic models for performance assessment , 2017 .

[89]  Patrick A. Narbel,et al.  Solar energy: Markets, economics and policies , 2012 .

[90]  Xin Li,et al.  Allowable flux density on a solar central receiver , 2014 .

[91]  Steven Dubowsky,et al.  A new design approach for solar concentrating parabolic dish based on optimized flexible petals , 2011 .

[92]  Ricardo Chacartegui,et al.  Alternative cycles based on carbon dioxide for central receiver solar power plants , 2011 .

[93]  Ambra Giovannelli,et al.  State of the Art on Small-Scale Concentrated Solar Power Plants , 2015 .

[94]  N. D. Kaushika,et al.  Performance of a low cost solar paraboloidal dish steam generating system , 2000 .

[95]  J. T. Pytilinski Solar energy installations for pumping irrigation water , 1978 .

[96]  B. Boumeddane,et al.  Experimental study of a designed solar parabolic trough with large rim angle , 2018, Renewable Energy.

[97]  Salwa Bouadila,et al.  Comparative study of different means of concentrated solar flux measurement of solar parabolic dish , 2013 .

[98]  Ruzhu Wang,et al.  Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens , 2010 .

[99]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[100]  John Pye,et al.  A new 500m2 paraboloidal dish solar concentrator , 2011 .

[101]  Qiang Li,et al.  Vacuum lifetime and residual gas analysis of parabolic trough receiver , 2016 .

[102]  Richard Bannerot,et al.  Derivation of Universal Error Parameters for Comprehensive Optical Analysis of Parabolic Troughs , 1986 .

[103]  Qiang Yu,et al.  Simulation and analysis of the central cavity receiver’s performance of solar thermal power tower plant , 2012 .

[104]  Umberto Desideri,et al.  Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations , 2013 .

[105]  Yongliang Li,et al.  Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid , 2018, Applied Energy.

[106]  Assensi Oliva,et al.  Numerical simulation of wind flow around a parabolic trough solar collector , 2013 .

[107]  M. S. Soni,et al.  CONCENTRATING SOLAR POWER-TECHNOLOGY, POTENTIAL AND POLICY IN INDIA , 2011 .

[108]  J. K. Nayak,et al.  Effects of shading and blocking in linear Fresnel reflector field , 2015 .

[109]  Sendhil Kumar Natarajan,et al.  Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish , 2008 .

[110]  Kamil Kaygusuz,et al.  Prospect of concentrating solar power in Turkey: The sustainable future , 2011 .

[111]  Huan Zhang,et al.  Comparison of different heat transfer models for parabolic trough solar collectors , 2015 .

[112]  Paul Denholm,et al.  Land-Use Requirements for Solar Power Plants in the United States , 2013 .

[113]  Gianluca Coccia,et al.  Design, manufacture, and test of a prototype for a parabolic trough collector for industrial process heat , 2015 .

[114]  Markus Eck,et al.  Dual-receiver concept for solar towers , 2006 .

[115]  M. Behnia,et al.  Modelling of Parabolic Trough Direct Steam Generation Solar Collectors , 1998, Renewable Energy.

[116]  José Luis Guzmán,et al.  Hybrid modeling of central receiver solar power plants , 2009, Simul. Model. Pract. Theory.

[117]  Chigueru Tiba,et al.  Analytic modeling of a solar power plant with parabolic linear collectors , 2009 .

[118]  Joshua M. Pearce Photovoltaics - A Path to Sustainable Futures , 2002 .

[119]  Rahman Saidur,et al.  A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends , 2018, Renewable and Sustainable Energy Reviews.

[120]  Antonio L. Avila-Marin,et al.  Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review , 2011 .

[121]  Sendhil Kumar Natarajan,et al.  An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator , 2009 .

[122]  Rosli Abu Bakar,et al.  Effect of Rim Angle to the Flux Distribution Diameter in Solar Parabolic Dish Collector , 2015 .

[123]  Yong Shuai,et al.  Development of a multi-layer and multi-dish model for the multi-dish solar energy concentrator system , 2014 .

[124]  A. Sharma A comprehensive study of solar power in India and World , 2011 .