Balancing of simple assembly lines under variations of task processing times

One of the simple assembly line balancing problems (SALBPs), known as SALBP-E, is considered. It consists in assigning a given set V={1,2,…,n} of elementary tasks to linearly ordered workstations with respect to precedence and capacity restrictions while minimizing the following product: number of used workstations × working time on the most loaded one. The stability of feasible and optimal solutions for this problem with regard to possible variations of the processing time of certain tasks is investigated. Two heuristic procedures finding a compromise between the efficiency and the considered stability measure of studied solutions are suggested and evaluated on known benchmarks.

[1]  Armin Scholl,et al.  Balancing and Sequencing of Assembly Lines , 1995 .

[2]  A. Grassi,et al.  A MULTIPLE SINGLE-PASS HEURISTIC ALGORITHM FOR THE STOCHASTIC ASSEMBLY LINE REBALANCING PROBLEM , 2007 .

[3]  Jean-Charles Billaut,et al.  Flexibility and Robustness in Scheduling , 2008 .

[4]  Semra Tunali,et al.  A review of the current applications of genetic algorithms in assembly line balancing , 2008, J. Intell. Manuf..

[5]  Marc E. Posner,et al.  Sensitivity Analysis for Scheduling Problems , 2004, J. Sched..

[6]  Dmitry Podkopaev,et al.  Stability and Regularization of Vector Problems of Integer Linear Programming , 2002 .

[7]  Martin W. P. Savelsbergh,et al.  Approximating the stability region for binary mixed-integer programs , 2009, Oper. Res. Lett..

[8]  H. L. Ong,et al.  A bidirectional heuristic for stochastic assembly line balancing Type II problem , 2005 .

[9]  Jae Kyeong Kim,et al.  An interactive procedure for multiple criteria group decision making with incomplete information , 1998 .

[10]  Yury Nikulin,et al.  Stability and accuracy functions in multicriteria linear combinatorial optimization problems , 2006, Ann. Oper. Res..

[11]  Eric Sanlaville,et al.  Sensitivity analysis of tree scheduling on two machines with communication delays , 2004, Parallel Comput..

[12]  M. Gen,et al.  Solving fuzzy assembly-line balancing problem with genetic algorithms , 1995 .

[13]  Sanja Petrovic,et al.  Sensitivity analysis of a fuzzy multiobjective scheduling problem , 2008 .

[14]  R. C. Carlson,et al.  Designing a Production Line to Maximize Profit , 1985 .

[15]  Nguyen Van Hop,et al.  A heuristic solution for fuzzy mixed-model line balancing problem , 2006, Eur. J. Oper. Res..

[16]  Hadi Gökçen,et al.  A chance-constrained approach to stochastic line balancing problem , 2007, Eur. J. Oper. Res..

[17]  Wen-Chyuan Chiang,et al.  The stochastic U-line balancing problem: A heuristic procedure , 2006, Eur. J. Oper. Res..

[18]  Rita Gamberini,et al.  A multiple single-pass heuristic algorithm solving the stochastic assembly line rebalancing problem , 2009 .

[19]  Albert P. M. Wagelmans,et al.  Sensitivity Analysis of the Economic Lot-Sizing Problem , 1993, Discret. Appl. Math..

[20]  Gerard Sierksma,et al.  Stability Aspects of the Traveling Salesman Problem Based on K-best Solutions , 1998, Discret. Appl. Math..

[21]  Marek Libura,et al.  On accuracy of solutions for discrete optimization problems with perturbed coefficientsof the objective function , 1999, Ann. Oper. Res..

[22]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[23]  Adil Baykasoğlu,et al.  Stochastic U-line balancing using genetic algorithms , 2007 .

[24]  I. Sabuncuoglu,et al.  Stochastic assembly line balancing using beam search , 2005 .

[25]  Mitsuo Gen,et al.  Fuzzy assembly line balancing using genetic algorithms , 1996 .

[26]  Mhand Hifi,et al.  Sensitivity analysis of the knapsack sharing problem: Perturbation of the weight of an item , 2008, Comput. Oper. Res..

[27]  Matthias Ehrgott,et al.  Multicriteria Optimization (2. ed.) , 2005 .

[28]  Seth Pettie Sensitivity Analysis of Minimum Spanning Trees in Sub-inverse-Ackermann Time , 2005, ISAAC.

[29]  Wen-Chyuan Chiang,et al.  An optimal piecewise-linear program for the U-line balancing problem with stochastic task times , 2006, Eur. J. Oper. Res..

[30]  Alexandre Dolgui,et al.  Stability analysis of an optimal balance for an assembly line with fixed cycle time , 2006, Eur. J. Oper. Res..

[31]  Albert P. M. Wagelmans,et al.  On the calculation of the stability radiusof an optimal or an approximate schedule , 1998, Ann. Oper. Res..

[32]  Dmitry Podkopaev,et al.  Quantitative stability analysis for vector problems of 0-1 programming , 2010, Discret. Optim..

[33]  Brahim Rekiek,et al.  State of art of optimization methods for assembly line design , 2002, Annu. Rev. Control..