Lie symmetries of a generalised nonlinear Schrodinger equation: I. The symmetry group and its subgroups

The symmetry group of the generalised non-linear Schrodinger equation i psi t+ Delta psi =a0 psi +a1 mod psi mod 2 psi +a2 mod psi mod 4 psi in three space dimensions is shown to be the extended Galilei group G(3), for a1a2 not=0, and the Galilei-similitude group Gd(3) (including a dilation) for a1=oor a2=0. All Lie subgroups of G(3) and Gd(3) are found. They will be used in a subsequent paper to obtain group invariant solutions of the equation.

[1]  P. Winternitz,et al.  The optical group and its subgroups , 1978 .

[2]  R. T. Sharp,et al.  Subgroups of the Poincaré group and their invariants , 1976 .

[3]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[4]  J. Voisin On Some Unitary Representations of the Galilei Group I. Irreducible Representations , 1965 .

[5]  Alfred Ramani,et al.  Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? , 1986 .

[6]  T. Boyd,et al.  Soliton formation in magnetized Vlasov plasmas , 1979, Journal of Plasma Physics.

[7]  D. W. Rand,et al.  ODEPAINLEVE - A MACSYMA package for painlevé analysis of ordinary differential equations , 1986 .

[8]  I. V. Tomov,et al.  Self-action of light beams in nonlinear media: soliton solutions , 1979 .

[9]  J. Tuszynski,et al.  Exact solutions of the multidimensional classical φ6‐field equations obtained by symmetry reduction , 1987 .

[10]  P. Olver Applications of lie groups to differential equations , 1986 .

[11]  Jiří Patera,et al.  Continuous subgroups of the fundamental groups of physics. II. The similitude group , 1975 .

[12]  R. T. Sharp,et al.  Continuous subgroups of the fundamental groups of physics. III. The de Sitter groups , 1977 .

[13]  H. Zassenhaus,et al.  Quantum numbers for particles in de Sitter space , 1976 .

[14]  Richard H. Enns,et al.  Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrodinger equation , 1986 .

[15]  Decio Levi,et al.  Symmetry reduction for the Kadomtsev–Petviashvili equation using a loop algebra , 1986 .

[16]  A. Hasegawa,et al.  Signal transmission by optical solitons in monomode fiber , 1981, Proceedings of the IEEE.

[17]  D. Levi,et al.  Bäcklund transformations and the infinite-dimensional symmetry group of the Kadomtsev-Petviashvili equation , 1986 .

[18]  P. Winternitz LIE GROUPS AND SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS , 1983 .

[19]  A. Hasegawa,et al.  Amplification and reshaping of optical solitons in a glass fiber-I. , 1982, Optics letters.

[20]  J. Tuszynski,et al.  New classes of exact solutions of the 6 model in 3+1 dimensions , 1987 .

[21]  R. T. Sharp,et al.  Invariants of real low dimension Lie algebras , 1976 .

[22]  Jiří Patera,et al.  Continuous subgroups of the fundamental groups of physics. I. General method and the Poincaré group , 1975 .

[23]  J. Cole,et al.  Similarity methods for differential equations , 1974 .

[24]  R. Paul,et al.  Theory of long-range coherence in biological systems. I. The anomalous behaviour of human erythrocytes. , 1983, Journal of theoretical biology.

[25]  P. Winternitz,et al.  Symmetry reduction for nonlinear relativistically invariant equations , 1984 .

[26]  R. T. Sharp,et al.  Symmetry breaking interactions for the time dependent Schrödinger equation , 1976 .

[27]  P. Sorba,et al.  The Galilei group and its connected subgroups , 1976 .

[28]  G. Soliani,et al.  Group analysis of the three‐wave resonant system in (2+1) dimensions , 1986 .

[29]  Levi,et al.  Subalgebras of loop algebras and symmetries of the Kadomtsev-Petviashvili equation. , 1985, Physical review letters.