Reliable phase stability analysis for cubic equation of state models

[1]  K. Kobe The properties of gases and liquids , 1959 .

[2]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[3]  E. Hansen,et al.  Bounding solutions of systems of equations using interval analysis , 1981 .

[4]  L. E. Baker,et al.  Gibbs energy analysis of phase equilibria , 1982 .

[5]  M. Michelsen The isothermal flash problem. Part I. Stability , 1982 .

[6]  R. Baker Kearfott,et al.  Algorithm 681: INTBIS, a portable interval Newton/bisection package , 1990, TOMS.

[7]  A. Neumaier Interval methods for systems of equations , 1990 .

[8]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[9]  Wallace B. Whiting,et al.  Area method for prediction of fluid-phase equilibria , 1992 .

[10]  The fractal response of robust solution techniques to the stationary point problem , 1993 .

[11]  Chenyi Hu,et al.  Algorithm 737: INTLIB—a portable Fortran 77 interval standard-function library , 1994, TOMS.

[12]  J. D. Seader,et al.  Application of interval Newton's method to chemical engineering problems , 1995, Reliab. Comput..

[13]  Christodoulos A. Floudas,et al.  Global optimization for the phase stability problem , 1995 .

[14]  W. Seider,et al.  Homotopy-continuation method for stability analysis in the global minimization of the Gibbs free energy , 1995 .

[15]  M. Stadtherr,et al.  Robust process simulation using interval methods , 1996 .

[16]  Mark A. Stadtherr,et al.  Reliable prediction of phase stability using an interval Newton method , 1996 .

[17]  Mark A. Stadtherr,et al.  ROBUST PHASE STABILITY ANALYSIS USING INTERVAL METHODS , 1998 .