A new class of Moving-Least-Squares WENO-SPH schemes

Abstract We present a new class of meshless Lagrangian particle methods based on the SPH formulation of Vila and Ben Moussa, combined with a new weighted essentially non-oscillatory (WENO) reconstruction technique on moving point clouds in multiple space dimensions. The key idea is to produce for each particle first a set of high order accurate Moving-Least-Squares (MLS) reconstructions on a set of different reconstruction stencils. Then, these reconstructions are combined with each other using a non-linear WENO technique in order to capture at the same time discontinuities and to maintain accuracy and low numerical dissipation in smooth regions. The numerical fluxes between interacting particles are subsequently evaluated using this MLS–WENO reconstruction at the midpoint between two particles, in combination with a Riemann solver that provides the necessary stabilization of the scheme based on the underlying physics of the governing equations. We propose the use of two different Riemann solvers: the Rusanov flux and an Osher-type flux. The use of monotone fluxes together with a WENO reconstruction ensures accuracy, stability, robustness and an essentially non-oscillatory solution without the artificial viscosity term usually employed in conventional SPH schemes. To our knowledge, this is the first time that the WENO method, which has originally been developed for mesh-based schemes in the Eulerian framework on fixed grids, is extended to meshfree Lagrangian particle methods like SPH in multiple space dimensions. We test the new algorithm on two dimensional blast wave problems and on the classical one-dimensional Sod shock tube problem for the Euler equations of compressible gas dynamics. We obtain a good agreement with the exact or numerical reference solution in all cases and an improved accuracy and robustness compared to existing standard SPH schemes.

[1]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[2]  Larry D. Libersky,et al.  Smooth particle hydrodynamics with strength of materials , 1991 .

[3]  Michael Dumbser,et al.  Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.

[4]  Michael Dumbser,et al.  A new 3D parallel SPH scheme for free surface flows , 2009 .

[5]  Romesh C. Batra,et al.  Modified smoothed particle hydrodynamics method and its application to transient problems , 2004 .

[6]  D. Balsara von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms , 1995 .

[7]  K. Y. Lam,et al.  A one-dimensional meshfree particle formulation for simulating shock waves , 2003 .

[8]  Prabhu Ramachandran,et al.  A comparison of SPH schemes for the compressible Euler equations , 2014, J. Comput. Phys..

[9]  Pep Español,et al.  Smoothed dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[11]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[12]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[13]  Shu-ichiro Inutsuka Reformulation of Smoothed Particle Hydrodynamics with Riemann Solver , 2002 .

[14]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[15]  G. R. Johnson,et al.  NORMALIZED SMOOTHING FUNCTIONS FOR SPH IMPACT COMPUTATIONS , 1996 .

[16]  Michael Dumbser,et al.  Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers , 2013, J. Comput. Phys..

[17]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[18]  Nikolaus A. Adams,et al.  A conservative SPH method for surfactant dynamics , 2010, J. Comput. Phys..

[19]  M. Dumbser,et al.  High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows , 2013, 1304.4816.

[20]  Eleuterio F. Toro,et al.  Finite-volume WENO schemes for three-dimensional conservation laws , 2004 .

[21]  Armin Iske,et al.  ADER schemes on adaptive triangular meshes for scalar conservation laws , 2005 .

[22]  Albert J. Valocchi,et al.  A multidimensional streamline-based method to simulate reactive solute transport in heterogeneous porous media , 2010 .

[23]  Marco Massabò,et al.  A meshless method to simulate solute transport in heterogeneous porous media , 2009 .

[24]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[25]  Tomonari Furukawa,et al.  Multidimensional discontinuous SPH method and its application to metal penetration analysis , 2013 .

[26]  Pep Español,et al.  Incompressible smoothed particle hydrodynamics , 2007, J. Comput. Phys..

[27]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[28]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[29]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[30]  Gui-Rong Liu,et al.  Restoring particle consistency in smoothed particle hydrodynamics , 2006 .

[31]  Jean-Paul Vila,et al.  ON PARTICLE WEIGHTED METHODS AND SMOOTH PARTICLE HYDRODYNAMICS , 1999 .

[32]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[33]  C. Ancey,et al.  Improved SPH methods for simulating free surface flows of viscous fluids , 2009 .

[34]  Chi-Wang Shu,et al.  High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations , 2009, J. Comput. Phys..

[35]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..

[36]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[37]  Nikolaus A. Adams,et al.  A transport-velocity formulation for smoothed particle hydrodynamics , 2013, J. Comput. Phys..

[38]  Zhi Zong,et al.  Smoothed particle hydrodynamics for numerical simulation of underwater explosion , 2003 .

[39]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[40]  J. Monaghan SPH without a Tensile Instability , 2000 .

[41]  Michael Dumbser,et al.  Numerical simulations of solute transport in highly heterogeneous formations: A comparison of alternative numerical schemes , 2013 .

[42]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[43]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[44]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[45]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[46]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[47]  Rade Vignjevic,et al.  Review of Development of the Smooth Particle Hydrodynamics (SPH) Method , 2009 .

[48]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[49]  Vladimir A. Titarev,et al.  WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..

[50]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[51]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[52]  Tom Abel,et al.  rpSPH: a novel smoothed particle hydrodynamics algorithm , 2010, 1003.0937.

[53]  Pep Español,et al.  A SPH-based particle model for computational microrheology , 2012 .

[54]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[55]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[56]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[57]  Nikolaus A. Adams,et al.  A constant-density approach for incompressible multi-phase SPH , 2009, J. Comput. Phys..

[58]  A. Gossler Moving Least-Squares: A Numerical Differentiation Method for Irregularly Spaced Calculation Points , 2001 .

[59]  Ted Belytschko,et al.  ON THE COMPLETENESS OF MESHFREE PARTICLE METHODS , 1998 .

[60]  Wen Chen,et al.  A Contact SPH Method with High-Order Limiters for Simulation of Inviscid Compressible Flows , 2013 .

[61]  Armin Iske,et al.  Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..

[62]  Wei Ge,et al.  A two-fluid smoothed particle hydrodynamics (TF-SPH) method for gas–solid fluidization , 2013 .

[63]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[64]  Nikolaus A. Adams,et al.  A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation , 2010, J. Comput. Phys..

[65]  S. Report Moving Least-Squares: A Numerical Differentiation Method for Irregularly Spaced Calculation Points , 2001 .

[66]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[67]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[68]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[69]  Marco Ellero,et al.  A multiscale SPH particle model of the near‐wall dynamics of leukocytes in flow , 2014, International journal for numerical methods in biomedical engineering.

[70]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[71]  S. Attaway,et al.  Smoothed particle hydrodynamics stability analysis , 1995 .

[72]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[73]  Bachir Ben Moussa,et al.  On the Convergence of SPH Method for Scalar Conservation Laws with Boundary Conditions , 2006 .