A Review of the Evolution of the Diatoms from the Origin of the Lineage to Their Populations

The diatoms are, without doubt, one of the most successful groups of unicellular algae and contribute significantly to the global carbon cycle. They arose within the heterokont lineage no earlier than 250 Ma. The radiation of the pigmented heterokonts and that of the haptophytes and dinoflagellates was likely a response to the Permian–Triassic (PT) extinction event when host cells with a red algal endosymbiont had an adaptive advantage. There are three major clades of diatoms, which have been formally recognized at the class level, and their monophyly is clearly linked to the type of analysis done, the alignment by the secondary structure of the ribosomal RNA molecule, and the number of out-groups. The auxospore continues to be the defining feature of the deeper clades/classes of the diatoms; the three classes being the radial centrics, the bipolar centrics, which include the radial Thalassiosirales, and the pennate diatoms. Additional important defining features are the position of the cribrum in loculate areolae and the presence or absence of a central structure in the annulus. Sublineages within each class generally follow traditional orders of diatoms based on morphology. The araphid diatoms are shown to comprise two groups: the basal araphids that have both a properizonial auxospore like the bipolar, mediophycean diatoms and a perizonial auxospore like the raphid diatoms and the core araphids that have a perizonial auxospore like the raphid diatoms. Raphid diatoms are monophyletic with the Eunotiales as a basal lineage. Canal raphe diatoms have arisen twice. The Bacillariales are a basal divergence, whereas the Surirellales diverged more recently with the canal raphe evolving from amphoroid diatoms through Entomoneis to Surirella. Nearly all of the cosmopolitan diatom species that have been investigated with molecular techniques have been shown to be composed of cryptic species. Breeding studies help to confirm that the cryptic species conform to a biological species concept and underscore the premise that the diatoms are underclassified as a group at the species level. Genetic diversity studies have shown that the diatoms have strongly structured populations both spatially and temporally.

[1]  T. Rynearson,et al.  Spring bloom development, genetic variation, and population succession in the planktonic diatom Ditylum brightwellii , 2006 .

[2]  B. Beszteri,et al.  Conventional and geometric morphometric studies of valve ultrastructural variation in two closely related Cyclotella species (Bacillariophyta) , 2005 .

[3]  David M. Williams,et al.  The evolution of the diatoms (Bacillariophyta) I. Origin of the group and assessment of the monophyly of its major divisions , 1993 .

[4]  M. D. Stefano,et al.  Adaptations of araphid pennate diatoms to a planktonic existence , 2009 .

[5]  L. Medlin,et al.  Phylogenetic relationships of the 'golden algae' (haptophytes, heterokont chromophytes) and their plastids , 1997 .

[6]  L. Medlin,et al.  Is the origin of diatoms related to the end-Permian mass extinction? , 1997 .

[7]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[8]  D. Mann In vivo Observations of Plastid and Cell Division in Raphid Diatoms and Their Relevance to Diatom Systematics , 1985 .

[9]  B. Beszteri,et al.  Ribosomal DNA sequence variation among sympatric strains of the Cyclotella meneghiniana complex (Bacillariophyceae) reveals cryptic diversity. , 2005, Protist.

[10]  I. Kaczmarska,et al.  MOLECULAR PHYLOGENY OF SELECTED MEMBERS OF THE ORDER THALASSIOSIRALES (BACILLARIOPHYTA) AND EVOLUTION OF THE FULTOPORTULA 1 , 2006 .

[11]  Linda K. Medlin,et al.  Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). I. The genus Placoneis. , 2007 .

[12]  Andrew J. Alverson,et al.  Molecular systematics and the diatom species. , 2008, Protist.

[13]  U. Sorhannus Diatom phylogenetics inferred based on direct optimization of nuclear‐encoded SSU rRNA sequences , 2004, Cladistics : the international journal of the Willi Hennig Society.

[14]  Adriana Zingone,et al.  Global diversity and biogeography of Skeletonema species (bacillariophyta). , 2008, Protist.

[15]  K. Serieyssol Diatoms of Europe: Diatoms of the European Inland Waters and Comparable habitats , 2012 .

[16]  H. Brinkmann,et al.  A “Green” Phosphoribulokinase in Complex Algae with Red Plastids: Evidence for a Single Secondary Endosymbiosis Leading to Haptophytes, Cryptophytes, Heterokonts, and Dinoflagellates , 2006, Journal of Molecular Evolution.

[17]  Lisa R. Moore,et al.  Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity , 2009, Nature.

[18]  L. Medlin WHY SILICA OR BETTER YET WHY NOT SILICA? SPECULATIONS AS TO WHY THE DIATOMS UTILISE SILICA AS THEIR CELL WALL MATERIAL , 2002 .

[19]  T. Ohama,et al.  Phylogenetic analysis of diatom coxI genes and implications of a fluctuating GC content on mitochondrial genetic code evolution , 2000, Current Genetics.

[20]  L. Medlin,et al.  Genetic diversity in the marine phytoplankton: a review and a consideration of Antarctic phytoplankton , 2000, Antarctic Science.

[21]  Debashish Bhattacharya,et al.  The single, ancient origin of chromist plastids , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Elizabeth C. Ruck,et al.  Origin and evolution of the canal raphe system in diatoms. , 2011, Protist.

[23]  David G. Mann,et al.  Evolution of the diatoms: insights from fossil, biological and molecular data , 2006 .

[24]  David G. Mann,et al.  Diatoms: Biology and Morphology of the Genera , 1990 .

[25]  E. Pfitzer Untersuchungen über Bau und Entwicklung der Bacillariaceen (Diatomaceen) , 1871 .

[26]  G. Muyzer,et al.  PHYLOGENETIC POSITION OF ATTHEYA LONGICORNIS AND ATTHEYA SEPTENTRIONALIS (BACILLARIOPHYTA) 1 , 2009, Journal of phycology.

[27]  S. Jung,et al.  Molecular genetic divergence of the centric diatom Cyclotella and Discostella (Bacillariophyceae) revealed by nuclear ribosomal DNA comparisons , 2010, Journal of Applied Phycology.

[28]  W. Vyverman,et al.  Limits to gene flow in a cosmopolitan marine planktonic diatom , 2010, Proceedings of the National Academy of Sciences.

[29]  David G. Mann,et al.  The species concept in diatoms , 1999 .

[30]  A. Grossman,et al.  Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. , 2008, Molecular biology and evolution.

[31]  T. Rynearson,et al.  Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii , 2005, Molecular ecology.

[32]  D. Mann,et al.  Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation. , 2009, Protist.

[33]  H. Lange-Bertalot,et al.  Naviculaceae : neue und wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bemerkungen zu einigen Gattungen , 1985 .

[34]  Linda K. Medlin,et al.  MORPHOLOGICAL AND MOLECULAR INVESTIGATIONS OF NAVICULOID DIATOMS. III. HIPPODONTA AND NAVICULA S. S. , 2008 .

[35]  A. Knoll,et al.  Why is the Land Green and the Ocean Red , 2004 .

[36]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[37]  David Jablonski,et al.  Mass extinctions and macroevolution , 2005, Paleobiology.

[38]  U. Sorhannus The Origination Time of Diatoms: An Analysis Based on Ribosomal RNA Data , 1997 .

[39]  Shinya Sato,et al.  Morphological and molecular investigations of naviculoid diatoms IV. Pinnularia vs. Caloneis , 2008 .

[40]  David M. Williams,et al.  Pursuit of a natural classification of diatoms: History, monophyly and the rejection of paraphyletic taxa , 2007 .

[41]  Linda K. Medlin,et al.  MORPHOLOGICAL AND MOLECULAR INVESTIGATIONS OF NAVICULOID DIATOMS. II. SELECTED GENERA AND FAMILIES , 2008 .

[42]  U. Sorhannus A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution , 2007 .

[43]  Linda K. Medlin,et al.  Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision , 2004 .

[44]  E. Virginia Armbrust,et al.  GENETIC DIFFERENTIATION AMONG POPULATIONS OF THE PLANKTONIC MARINE DIATOM DITYLUM BRIGHTWELLII (BACILLARIOPHYCEAE) 1 , 2004 .

[45]  David G. Mann,et al.  Algae: An Introduction to Phycology , 1996 .

[46]  K. Krammer The genus Pinnularia , 2000 .

[47]  D. Mann,et al.  Sexual reproduction, mating system, chloroplast dynamics and abrupt cell size reduction in Pseudo-nitzschia pungens from the North Sea (Bacillariophyta) , 2005 .

[48]  D. Mann,et al.  13 Molecular genetics and the neglected art of diatomics , 2007 .

[49]  S. Yoshikawa,et al.  ISOLATION AND CHARACTERIZATION OF PARMALES (HETEROKONTA/HETEROKONTOPHYTA/STRAMENOPILES) FROM THE OYASHIO REGION, WESTERN NORTH PACIFIC 1 , 2011, Journal of phycology.

[50]  L. Medlin THE USE OF THE TERMS CENTRIC AND PENNATE , 2009 .

[51]  D. Bhattacharya Origins of Algae and their Plastids , 1997, Plant Systematics and Evolution.

[52]  U. Sorhannus,et al.  RpoA: A Useful Gene for Phylogenetic Analysis in Diatoms , 2003, The Journal of eukaryotic microbiology.

[53]  R. Lande,et al.  QUANTITATIVE GENETIC ANALYSIS OF MORPHOLOGICAL VARIATION IN AN ANTARCTIC DIATOM GROWN AT TWO LIGHT INTENSITIES 1 , 1987 .

[54]  D. Mann,et al.  PHYLOGENETIC POSITION OF TOXARIUM, A PENNATE‐LIKE LINEAGE WITHIN CENTRIC DIATOMS (BACILLARIOPHYCEAE) 1 , 2003 .

[55]  F. Gasse,et al.  A preliminary phylogeny of diatoms based on 28S ribosomal RNA sequence data , 1995 .

[56]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[57]  L. Medlin COMMENT IN REPLY TO SCHMID (2003) “THE EVOLUTION OF THE SILICIFIED DIATOM CELL WALL—REVISITED” , 2004 .

[58]  F. Kützing,et al.  Die kieselschaligen Bacillarien oder Diatomeen , 2012 .

[59]  K. Evans,et al.  HIGH LEVELS OF GENETIC DIVERSITY AND LOW LEVELS OF GENETIC DIFFERENTIATION IN NORTH SEA PSEUDO‐NITZSCHIA PUNGENS (BACILLARIOPHYCEAE) POPULATIONS 1 , 2005 .

[60]  V. Houk,et al.  THE STELLIGEROID TAXA OF THE GENUS CYCLOTELLA (KÜTZING) BRÉBISSON (BACILLARIOPHYCEAE) AND THEIR TRANSFER INTO THE NEW GENUS DISCOSTELLA GEN. NOV. , 2004 .

[61]  J. Young,et al.  Coccolithophores : from molecular processes to global impact , 2004 .

[62]  S. Bates,et al.  MICROSATELLITE MARKER DEVELOPMENT AND GENETIC VARIATION IN THE TOXIC MARINE DIATOM PSEUDO‐NITZSCHIA MULTISERIES (BACILLARIOPHYCEAE) 1 , 2004 .

[63]  T. Rynearson,et al.  DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii , 2000 .

[64]  Oceans Canada,et al.  A review of auxospore structure, ontogeny and diatom phylogeny , 2001 .

[65]  R. Crawford,et al.  The diatoms Radialiplicata sol (Ehrenberg) Glezer and R. clavigera (Grunow) Glezer and their transfer to Ellerbeckia Crawford, thus a genus with freshwater and marine representatives. , 2006 .

[66]  Debashish Bhattacharya,et al.  Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms , 2009, Science.

[67]  B. Leadbeater,et al.  The Chromophyte algae : problems and perspectives , 1990 .

[68]  L. Medlin The Permian–Triassic mass extinction forces the radiation of the modern marine phytoplankton , 2011 .

[69]  B. Beszteri,et al.  An assessment of cryptic genetic diversity within the Cyclotella meneghiniana species complex (Bacillariophyta) based on nuclear and plastid genes, and amplified fragment length polymorphisms , 2007 .

[70]  J. C. Gallagher PHYSIOLOGICAL VARIATION AND ELECTROPHORETIC BANDING PATTERNS OF GENETICALLY DIFFERENT SEASONAL POPULATIONS OF SKELETONEMA COSTATUM (BACILLARIOPHYCEAE) 1 , 1982 .

[71]  D. Bhattacharya,et al.  THE PHYLOGENY OF PLASTIDS: A REVIEW BASED ON COMPARISONS OF SMALL‐SUBUNIT RIBOSOMAL RNA CODING REGIONS , 1995 .

[72]  D. Sarno,et al.  DIVERSITY IN THE GENUS SKELETONEMA (BACILLARIOPHYCEAE). II. AN ASSESSMENT OF THE TAXONOMY OF S. COSTATUM‐LIKE SPECIES WITH THE DESCRIPTION OF FOUR NEW SPECIES 1 , 2005 .

[73]  Eileen J. Cox Diatoms: the evolution of morphogenetic complexity in single-celled plants , 2002 .

[74]  Armbrust,et al.  The Phaeodactylum genome reveals the dynamic nature and multi-lineage evolutionary history of diatom genomes , 2011 .

[75]  D. Mann,et al.  MOLECULAR EVIDENCE CONFIRMS SISTER RELATIONSHIP OF ARDISSONEA, CLIMACOSPHENIA, AND TOXARIUM WITHIN THE BIPOLAR CENTRIC DIATOMS (BACILLARIOPHYTA, MEDIOPHYCEAE), AND CLADISTIC ANALYSES CONFIRM THAT EXTREMELY ELONGATED SHAPE HAS ARISEN TWICE IN THE DIATOMS 1 , 2008, Journal of phycology.

[76]  S. M. Edgar,et al.  PHYLOGENY OF AULACOSEIRA (BACILLARIOPHYTA) BASED ON MOLECULES AND MORPHOLOGY 1 , 2004 .

[77]  L. Medlin Molecular Clocks and Inferring Evolutionary Milestones and Biogeography in the Microalgae , 2008 .

[78]  K. Mendgen,et al.  Evolution of the diatoms. VI. Assessment of the new genera in the araphids using molecular data. , 2008 .

[79]  P. Keeling,et al.  Diversity and evolutionary history of plastids and their hosts. , 2004, American journal of botany.

[80]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[81]  H. Stosch Oogamy in a Centric Diatom , 1950, Nature.

[82]  H. Claustre,et al.  BOLIDOMONAS: A NEW GENUS WITH TWO SPECIES BELONGING TO A NEW ALGAL CLASS, THE BOLIDOPHYCEAE (HETEROKONTA) , 1999 .

[83]  Andrew J. Alverson,et al.  THE EVOLUTION OF ELONGATE SHAPE IN DIATOMS 1 , 2006 .

[84]  Shinya Sato,et al.  THE BIOLOGICAL REALITY OF THE CORE AND BASAL GROUP OF ARAPHID DIATOMS , 2009 .

[85]  T. Cavalier-smith,et al.  Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista) , 2006, Journal of Molecular Evolution.

[86]  Elizabeth C. Ruck,et al.  Preliminary Phylogeny of the Family Surirellaceae - (Bacillariophyta) , 2004 .

[87]  D. Mann,et al.  Genetic divergence and reproductive barriers among morphologically heterogeneous sympatric clones of Eunotia bilunaris sensu lato (Bacillariophyta). , 2008, Protist.

[88]  D. Sarno,et al.  DIVERSITY IN THE GENUS SKELETONEMA (BACILLARIOPHYCEAE). I. A REEXAMINATION OF THE TYPE MATERIAL OF S. COSTATUM WITH THE DESCRIPTION OF S. GREVILLEI SP. NOV. 1 , 2005 .

[89]  H. Philippe,et al.  Comparison of molecular and paleontological data in diatoms suggests a major gap in the fossil record , 1994 .

[90]  Andrew J. Alverson,et al.  The limits of nuclear-encoded SSU rDNA for resolving the diatom phylogeny , 2009, European journal of phycology.

[91]  Shinya Sato Phylogeny of araphid diatoms, inferred from morphological and molecular data , 2008 .

[92]  E. Cox Variation Within the Genus Pinnularia Ehrenb.: Further Evidence for the Use of Live Material in Diatom Systematics? , 1988 .

[93]  B. Finlay Global Dispersal of Free-Living Microbial Eukaryote Species , 2002, Science.

[94]  G. Muyzer,et al.  The Rise of the Rhizosolenid Diatoms , 2004, Science.

[95]  A. Schmid THE EVOLUTION OF THE SILICIFIED DIATOM CELL WALL—REVISITED , 2003 .

[96]  L. Medlin Pursuit of a natural classification of diatoms: An incorrect comparison of published data , 2010 .

[97]  A. Schmid The special Golgi-ER-mitochondrium unit in the diatom genusCoscinodiscus , 2004, Plant Systematics and Evolution.

[98]  R. Lauterborn Untersuchungen über bau, kernteilung und bewegung der diatomeen, von Robert Lauterborn. , 1896 .

[99]  D. Mann,et al.  Congruence of morphological, reproductive and ITS rDNA sequence data in some Australasian Eunotia bilunaris (Bacillariophyta) , 2007 .

[100]  A. Amato,et al.  Reproductive isolation among sympatric cryptic species in marine diatoms. , 2007, Protist.

[101]  C. Berney,et al.  A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record , 2006, Proceedings of the Royal Society B: Biological Sciences.

[102]  Julie A. Hawkins,et al.  Developmental Genetics and Plant Evolution , 2002 .

[103]  L. Medlin,et al.  Evolution of the diatoms (Bacillariophyta). IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. , 1996, Molecular phylogenetics and evolution.

[104]  R. Gersonde,et al.  Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 1. Vegetative cells , 1990 .

[105]  D. Mann,et al.  An assessment of potential diatom "barcode" genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). , 2007, Protist.

[106]  L. Medlin,et al.  A review of the evolution of the diatoms - a total approach using molecules, morphology and geology , 2000 .

[107]  David G. Mann,et al.  The species concept in diatoms: Evidence for morphologically distinct, sympatric gamodemes in four epipelic species , 1989, Plant Systematics and Evolution.

[108]  W. Kooistra,et al.  Molecular phylogeny and morphology of the marine diatom Talaroneis posidoniae gen. et sp. nov. (Bacillariophyta) advocate the return of the Plagiogrammaceae to the pennate diatoms , 2004 .

[109]  L. Medlin Evolution of the Diatoms , 1999 .

[110]  R. Lauterborn Untersuchungen ueber Ban Kerntheilung und Bewegung der Diatomeen , 1897, Nature.