Local feature based retrieval approach for iris biometrics

This paper proposes an efficient retrieval approach for iris using local features. The features are extracted from segmented iris image using scale invariant feature transform (SIFT). The keypoint descriptors extracted from SIFT are clustered into m groups using k-means. The idea is to perform indexing of keypoints based on descriptor property. During database indexing phase, k-d tree k-dimensional tree is constructed for each cluster center taken from N iris images. Thus for m clusters, m such k-d trees are generated denoted as ti, where 1 ⩽ i ⩽ m. During the retrieval phase, the keypoint descriptors from probe iris image are clustered into m groups and ith cluster center is used to traverse corresponding ti for searching. k nearest neighbor approach is used, which finds p neighbors from each tree (ti) that falls within certain radius r centered on the probe point in k-dimensional space. Finally, p neighbors from m trees are combined using union operation and top S matches (S ⊆ (m× p)) corresponding to query iris image are retrieved. The proposed approach has been tested on publicly available databases and outperforms the existing approaches in terms of speed and accuracy.

[1]  Nalini K. Ratha,et al.  Proceedings of the 5th international conference on Audio- and Video-Based Biometric Person Authentication , 2005 .

[2]  James L. Wayman,et al.  Error rate equations for the general biometric system , 1999, IEEE Robotics Autom. Mag..

[3]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[4]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[5]  Arun Ross,et al.  Indexing iris images using the Burrows-Wheeler Transform , 2010, 2010 IEEE International Workshop on Information Forensics and Security.

[6]  Anil K. Jain,et al.  Encyclopedia of Biometrics , 2015, Springer US.

[7]  Venu Govindaraju,et al.  Efficient search and retrieval in biometric databases , 2005, SPIE Defense + Commercial Sensing.

[8]  Venu Govindaraju,et al.  Indexing Biometric Databases Using Pyramid Technique , 2005, AVBPA.

[9]  John Daugman,et al.  The importance of being random: statistical principles of iris recognition , 2003, Pattern Recognit..

[10]  Feng Hao,et al.  A Fast Search Algorithm for a Large Fuzzy Database , 2008, IEEE Transactions on Information Forensics and Security.

[11]  Arun Ross,et al.  Index Codes for Multibiometric Pattern Retrieval , 2012, IEEE Transactions on Information Forensics and Security.

[12]  Phalguni Gupta,et al.  Robust iris indexing scheme using geometric hashing of SIFT keypoints , 2010, J. Netw. Comput. Appl..

[13]  Zhenan Sun,et al.  Coarse Iris Classification by Learned Visual Dictionary , 2007, ICB.

[14]  Arun Ross,et al.  Indexing iris images , 2008, 2008 19th International Conference on Pattern Recognition.

[15]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[16]  Stan Z. Li,et al.  Advances in Biometrics, International Conference, ICB 2007, Seoul, Korea, August 27-29, 2007, Proceedings , 2007, ICB.

[17]  Phalguni Gupta,et al.  An efficient color and texture based iris image retrieval technique , 2012, Expert Syst. Appl..

[18]  Phalguni Gupta,et al.  Use of geometric features of principal components for indexing a biometric database , 2013, Math. Comput. Model..

[19]  Andreas Uhl,et al.  Iris-Biometric Hash Generation for Biometric Database Indexing , 2010, 2010 20th International Conference on Pattern Recognition.

[20]  N.B. Puhan,et al.  A novel iris database indexing method using the iris color , 2008, 2008 3rd IEEE Conference on Industrial Electronics and Applications.

[21]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[22]  Banshidhar Majhi,et al.  Parallel geometric hashing for robust iris indexing , 2011, Journal of Real-Time Image Processing.

[23]  John Daugman,et al.  How iris recognition works , 2002, IEEE Transactions on Circuits and Systems for Video Technology.

[24]  Somnath Dey,et al.  Iris Data Indexing Method Using Gabor Energy Features , 2012, IEEE Transactions on Information Forensics and Security.

[25]  David Zhang,et al.  Coarse iris classification using box-counting to estimate fractal dimensions , 2005, Pattern Recognit..

[26]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[27]  Sanjay Kumar Jena,et al.  Proceedings of the 2011 International Conference on Communication, Computing & Security, ICCCS 2011, Odisha, India, February 12-14, 2011 , 2011 .

[28]  Phalguni Gupta,et al.  Indexing Iris Biometric Database Using Energy Histogram of DCT Subbands , 2009, IC3.

[29]  Sambit Bakshi,et al.  Real-time iris segmentation based on image morphology , 2011, ICCCS '11.

[30]  Patrick J. Flynn,et al.  Image understanding for iris biometrics: A survey , 2008, Comput. Vis. Image Underst..

[31]  Hugo Proença,et al.  Iris Recognition: An Analysis of the Aliasing Problem in the Iris Normalization Stage , 2006, 2006 International Conference on Computational Intelligence and Security.

[32]  Haim J. Wolfson,et al.  Geometric hashing: an overview , 1997 .

[33]  Phalguni Gupta,et al.  Indexing Multimodal Biometric Databases Using Kd-Tree with Feature Level Fusion , 2008, ICISS.

[34]  Tieniu Tan,et al.  Global Texture Analysis of Iris Images for Ethnic Classification , 2006, ICB.

[35]  José Hernández Palancar,et al.  Fingerprint indexing with bad quality areas , 2013, Expert Syst. Appl..