The population dynamics of Differential Evolution: A mathematical model

Differential evolution (DE) is well known as a simple and efficient algorithm for global optimization over continuous spaces. This article provides a simple mathematical model of the underlying evolutionary dynamics of a one-dimensional DE. The model relates the search process of DE with the classical gradient descent search and also analyzes the convergence behavior of a DE population, very near to optima.

[1]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[2]  Amit Konar,et al.  Two-Dimensional IIR Filter Design with Modern Search Heuristics: a Comparative Study , 2006, Int. J. Comput. Intell. Appl..

[3]  Amit Konar,et al.  Two improved differential evolution schemes for faster global search , 2005, GECCO '05.

[4]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[5]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[6]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[7]  Jan A Snyman,et al.  Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms , 2005 .

[8]  Mikhail A. Semenov,et al.  Analysis of Convergence of an Evolutionary Algorithm with Self-Adaptation using a Stochastic Lyapunov function , 2003, Evolutionary Computation.

[9]  Dana Petcu,et al.  Adaptive Pareto Differential Evolution and Its Parallelization , 2003, PPAM.

[10]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[11]  R. W. Derksen,et al.  Differential Evolution in Aerodynamic Optimization , 1999 .

[12]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[13]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[14]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[15]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[16]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[17]  Andries Petrus Engelbrecht,et al.  Differential evolution methods for unsupervised image classification , 2005, 2005 IEEE Congress on Evolutionary Computation.

[18]  Arthur C. Sanderson,et al.  Minimal representation multisensor fusion using differential evolution , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.