A Note on Jacobians, Tutte Polynomials, and Two-Variable Zeta Functions of Graphs

We address questions posed by Lorenzini about relations between Jacobians, Tutte polynomials, and the Brill–Noether theory of finite graphs, as encoded in his two-variable zeta functions. In particular, we give examples showing that none of these invariants is determined by the other two.

[1]  Gr Ruud Pellikaan,et al.  On special divisors and the two variable zeta function of algebraic curves over finite fields , 1996 .

[2]  Farbod Shokrieh The monodromy pairing and discrete logarithm on the Jacobian of finite graphs , 2010, J. Math. Cryptol..

[3]  Criel Merino López Chip firing and the tutte polynomial , 1997 .

[4]  Robert Cori,et al.  On the Sandpile Group of Dual Graphs , 2000, Eur. J. Comb..

[5]  Sam Payne,et al.  On a Cohen–Lenstra heuristic for Jacobians of random graphs , 2014, 1402.5129.

[6]  Sam Payne,et al.  A tropical proof of the Brill-Noether Theorem , 2010, 1001.2774.

[7]  Melanie Matchett Wood,et al.  The distribution of sandpile groups of random graphs , 2014, 1402.5149.

[8]  Serguei Norine,et al.  Riemann–Roch and Abel–Jacobi theory on a finite graph , 2006, math/0608360.

[9]  S. Foldes The rotor effect can alter the chromatic polynomial , 1978, J. Comb. Theory, Ser. B.

[10]  Serguei Norine,et al.  Harmonic morphisms and hyperelliptic graphs , 2007, 0707.1309.

[11]  Dino J. Lorenzini Two-Variable Zeta-Functions on Graphs and Riemann–Roch Theorems , 2012 .

[12]  Béla Bollobás,et al.  Contraction-Deletion Invariants for Graphs , 2000, J. Comb. Theory B.

[13]  J. Lagarias,et al.  On a two-variable zeta function for number fields , 2001, math/0104176.

[14]  Abelian Avalanches,et al.  Abelian Avalanches and Tutte Polynomials , 1992 .

[15]  Matthew Baker,et al.  Specialization of linear systems from curves to graphs , 2007 .

[16]  Henri Cohen,et al.  Heuristics on class groups of number fields , 1984 .

[17]  Norman Biggs The Critical Group from a Cryptographic Perspective , 2007 .

[18]  L. Caporaso Algebraic and combinatorial Brill-Noether theory , 2011, 1106.1140.

[19]  A. Gabrielov Avalanches, Sandpiles and Tutte Decomposition , 1993 .

[20]  R. Schoof,et al.  Effectivity of Arakelov divisors and the theta divisor of a number field , 1998, math/9802121.

[21]  Yoav Len,et al.  The Brill–Noether rank of a tropical curve , 2012, Journal of Algebraic Combinatorics.

[22]  Chang Mou Lim,et al.  A note on Brill-Noether thoery and rank determining sets for metric graphs , 2011, 1106.5519.

[23]  E. Looijenga,et al.  Compact Moduli Spaces and Vector Bundles , 2012 .

[25]  Norman Biggs The Tutte Polynomial as a Growth Function , 1999 .

[26]  Christopher Deninger Two-variable zeta functions and regularized products , 2002 .