Dynamically dual vibration absorbers: a bond graph approach to vibration control

This paper investigates the use of an actuator and sensor pair coupled via a control system to damp out oscillations in resonant mechanical systems. Specifically the designs emulate passive control strategies, resulting in controller dynamics that resemble a physical system. Here, the use of the novel dynamically dual approach is proposed to design the vibration absorbers to be implemented as the controller dynamics; this gives rise to the dynamically dual vibration absorber (DDVA). It is shown that the method is a natural generalisation of the classical single-degree of freedom mass–spring–damper vibration absorber and also of the popular acceleration feedback controller. This generalisation is applicable to the vibration control of arbitrarily complex resonant dynamical systems. It is further shown that the DDVA approach is analogous to the hybrid numerical-experimental testing technique known as substructuring. This analogy enables methods and results, such as robustness to sensor/actuator dynamics, to be applied to dynamically dual vibration absorbers. Illustrative experiments using both a hinged rigid beam and a flexible cantilever beam are presented.

[1]  Dennis S. Bernstein,et al.  Bode integral constraints, collocation, and spillover in active noise and vibration control , 1998, IEEE Trans. Control. Syst. Technol..

[2]  S. O. Reza Moheimani,et al.  Multimode piezoelectric shunt damping with a highly resonant impedance , 2004, IEEE Transactions on Control Systems Technology.

[3]  R. Rosenberg,et al.  System Dynamics: Modeling and Simulation of Mechatronic Systems , 2006 .

[4]  Peter J. Gawthrop,et al.  Bond graphs in model matching control , 2006 .

[5]  Wolfgang Borutzky,et al.  Bond Graph Modelling of Engineering Systems , 2011 .

[6]  Peter J. Gawthrop,et al.  Metamodelling: for bond graphs and dynamic systems , 1996 .

[7]  David E. Hardt,et al.  Controller Design in the Physical Domain , 1989, 1989 American Control Conference.

[8]  S. O. Reza Moheimani,et al.  Control orientated synthesis of high-performance piezoelectric shunt impedances for structural vibration control , 2005, IEEE Transactions on Control Systems Technology.

[9]  Amalendu Mukherjee,et al.  A bond graph based analysis of coupled vibratory systems taking advantage of the dual formulation , 1985 .

[10]  David J. Wagg,et al.  Real-Time Testing With Dynamic Substructuring , 2008 .

[11]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[12]  Bernhard Maschke,et al.  Dissipative Systems Analysis and Control , 2000 .

[13]  Steen Krenk,et al.  Linear control strategies for damping of flexible structures , 2006 .

[14]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[15]  David J. Wagg,et al.  Robust real-time substructuring techniques for under-damped systems , 2007 .

[16]  Peter J. Gawthrop,et al.  Bond graph based control using virtual actuators , 2004 .

[17]  Dean Karnopp,et al.  System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems , 1999 .

[18]  P. Gawthrop Physical model-based control: A bond graph approach , 1995 .

[19]  Amalendu Mukherjee,et al.  Analysis of Acoustoelastic Systems Using Modal Bond Graphs , 1990 .

[20]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[21]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[22]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[23]  Wolfgang Borutzky,et al.  Bond Graph Modelling of Engineering Systems Theory , Applications and Software Support , 2015 .

[24]  Donald L. Margolis A survey of bond graph modelling for interacting lumped and distributed systems , 1985 .

[25]  B. Bhikkaji,et al.  Physical-model-based control of a piezoelectric tube for nano-scale positioning applications , 2010 .

[26]  Peter J. Gawthrop,et al.  Coaxially Coupled Inverted Pendula: Bond Graph-Based Modelling, Design and Control , 2011 .

[27]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[28]  Romeo Ortega,et al.  Putting energy back in control , 2001 .

[29]  R. G. Coyle,et al.  Introduction to system dynamics , 1996 .

[30]  Brian D. O. Anderson,et al.  Network Analysis and Synthesis: A Modern Systems Theory Approach , 2006 .

[31]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[32]  M. Balas,et al.  Feedback control of flexible systems , 1978 .

[33]  P. Gawthrop,et al.  Bond-graph modeling , 2007, IEEE Control Systems.

[34]  A. P,et al.  Mechanical Vibrations , 1948, Nature.

[35]  Radhakant Padhi,et al.  Active vibration suppression of non-linear beams using optimal dynamic inversion , 2009 .

[36]  Wilfrid Marquis-Favre,et al.  Bond Graphs and Inverse Modeling for Mechatronic System Design , 2011 .

[37]  Roberto Bucher,et al.  Rapid controller prototyping with Matlab/Simulink and Linux , 2006 .

[38]  Y. Iwamoto,et al.  Elasto-plastic contact analysis of an ultra-high molecular weight polyethylene tibial component based on geometrical measurement from a retrieved knee prosthesis , 2004, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[39]  Peter J. Gawthrop,et al.  Bond graph based control and substructuring , 2009, Simul. Model. Pract. Theory.

[40]  David J. Wagg,et al.  Bond‐graph based substructuring of dynamical systems , 2005 .

[41]  Steen Krenk,et al.  Optimal resonant control of flexible structures , 2009 .

[42]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[43]  Gawthrop A tutorial introduction for control engineers , 2014 .

[44]  Antony Darby,et al.  The development of real–time substructure testing , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  R. Ortega,et al.  Robustness of discrete-time direct adaptive controllers , 1985 .

[46]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[47]  S. O. Reza Moheimani,et al.  Piezoelectric Transducers for Vibration Control and Damping , 2006 .

[48]  Dean Karnopp,et al.  Coupled Vibratory‐System Analysis, Using the Dual Formulation , 1966 .