Hadwiger's conjecture for proper circular arc graphs

Circular arc graphs are graphs whose vertices can be represented as arcs on a circle such that any two vertices are adjacent if and only if their corresponding arcs intersect. Proper circular arc graphs are graphs which have a circular arc representation where no arc is completely contained in any other arc. Hadwiger's conjecture states that if a graph G has chromatic number k, then a complete graph with k vertices is a minor of G. We prove Hadwiger's conjecture for proper circular arc graphs.

[1]  Fanica Gavril,et al.  Algorithms on circular-arc graphs , 1974, Networks.

[2]  Andrei Kotlov,et al.  Matchings and Hadwiger's Conjecture , 2002, Discret. Math..

[3]  Ken-ichi Kawarabayashi,et al.  Any 7-Chromatic Graphs Has K7 Or K4,4 As A Minor , 2005, Comb..

[4]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[5]  Wen-Lian Hsu,et al.  Maximum Weight Clique Algorithms for Circular-Arc Graphs and Circle Graphs , 1985, SIAM J. Comput..

[6]  N. S. Narayanaswamy,et al.  A note on the Hadwiger number of circular arc graphs , 2007, Inf. Process. Lett..

[7]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[8]  G. Dirac,et al.  On the structure of 5- and 6-chromatic abstract graphs. , 1964 .

[9]  A. Tucker,et al.  Matrix characterizations of circular-arc graphs , 1971 .

[10]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[11]  C. SIAMJ.,et al.  REVISITING TUCKER ’ S ALGORITHM TO COLOR CIRCULAR ARC GRAPHS , 2003 .

[12]  Bruce A. Reed,et al.  Hadwiger's conjecture for line graphs , 2004, Eur. J. Comb..

[13]  G. Dirac A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs , 1952 .

[14]  F. Stahl,et al.  Circular genetic maps , 1967, Journal of cellular physiology.

[15]  Deming Li,et al.  Hadwiger's conjecture for powers of cycles and their complements , 2007, Eur. J. Comb..

[16]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[17]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[18]  K. Stoffers Scheduling of traffic lights—A new approach☆ , 1968 .

[19]  Mario Valencia-Pabon Revisiting Tucker's Algorithm to Color Circular Arc Graphs , 2003, SIAM J. Comput..

[20]  Robin Thomas,et al.  Hadwiger's conjecture forK6-free graphs , 1993, Comb..

[21]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[22]  Lawrence Hubert,et al.  SOME APPLICATIONS OF GRAPH THEORY AND RELATED NON‐METRIC TECHNIQUES TO PROBLEMS OF APPROXIMATE SERIATION: THE CASE OF SYMMETRIC PROXIMITY MEASURES , 1974 .

[23]  Kazuo Nakajima,et al.  An Optimal Algorithm for Finding a Maximum Independent Set of a Circular-Arc Graph , 1988, SIAM J. Comput..

[24]  Paul A. Catlin,et al.  Hajós' graph-coloring conjecture: Variations and counterexamples , 1979, J. Comb. Theory, Ser. B.

[25]  D. P. Bovet,et al.  An $O(n^2 )$ Algorithm for Coloring Proper Circular Arc Graphs , 1981 .

[26]  Ivan Tafteberg Jakobsen On certain homomorphism-properties of graphs with applications to the conjecture of hadwiger , 1971 .

[27]  V. Klee What Are the Intersection Graphs of Arcs in a Circle , 1969 .

[28]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[29]  Alan Tucker,et al.  Structure theorems for some circular-arc graphs , 1974, Discret. Math..

[30]  D. West Introduction to Graph Theory , 1995 .

[31]  A. Tucker,et al.  Coloring a Family of Circular Arcs , 1975 .