The singular value decomposition to approximate spectra of dynamical systems. Theoretical aspects

Abstract In this paper we consider the singular value decomposition (SVD) of a fundamental matrix solution in order to approximate the Lyapunov and exponential dichotomy spectra of a given system. One of our main results is to prove that SVD techniques are sound approaches for systems with stable and distinct Lyapunov exponents. We also show how the information which emerges with the SVD techniques can be used to obtain information on the growth directions associated to given spectral intervals.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  A. Bunse-Gerstner,et al.  Numerical computation of an analytic singular value decomposition of a matrix valued function , 1991 .

[3]  Li︠u︡dmila I︠A︡kovlevna Adrianova Introduction to linear systems of differential equations , 1995 .

[4]  S. Finch Lyapunov Exponents , 2007 .

[5]  Luca Dieci,et al.  Lyapunov and Sacker–Sell Spectral Intervals , 2007 .

[6]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[7]  K. Wright Differential equations for the analytic singular value decomposition of a matrix , 1992 .

[8]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[9]  B. Nevitt,et al.  Coping With Chaos , 1991, Proceedings of the 1991 International Symposium on Technology and Society - ISTAS `91.

[10]  David E. Stewart,et al.  A NEW ALGORITHM FOR THE SVD OF A LONG PRODUCT OF MATRICES AND THE STABILITY OF PRODUCTS , 1997 .

[11]  Timo Eirola,et al.  On Smooth Decompositions of Matrices , 1999, SIAM J. Matrix Anal. Appl..

[12]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[13]  L. Arnold Random Dynamical Systems , 2003 .

[14]  J. Greene,et al.  The calculation of Lyapunov spectra , 1987 .

[15]  The structurally stable linear systems on the half-line are those with exponential dichotomies , 1979 .

[16]  I Ya Gol'dsheid,et al.  Lyapunov indices of a product of random matrices , 1989 .

[17]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[18]  George R. Sell,et al.  Ergodic properties of linear dynamical systems , 1987 .

[19]  Luca Dieci,et al.  Lyapunov Spectral Intervals: Theory and Computation , 2002, SIAM J. Numer. Anal..

[20]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[21]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[22]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[23]  Ulrich Parlitz,et al.  Comparison of Different Methods for Computing Lyapunov Exponents , 1990 .

[24]  R. Russell,et al.  On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems , 1997 .

[25]  David E. Stewart,et al.  Exponential splittings of products of matrices and accurately computing singular values of long products , 2000 .

[26]  Luca Dieci,et al.  Smooth SVD on the Lorentz group with application to computation of Lyapunov exponents , 2004 .

[27]  P. Walters Introduction to Ergodic Theory , 1977 .

[28]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .