The closest vector problem in tensored root lattices of type A and in their duals
暂无分享,去创建一个
[1] I. Vaughan L. Clarkson,et al. An Algorithm to Compute a Nearest Point in the Lattice An* , 1999, AAECC.
[2] Chris Peikert,et al. On Ideal Lattices and Learning with Errors over Rings , 2010, EUROCRYPT.
[3] Chris Peikert,et al. A Toolkit for Ring-LWE Cryptography , 2013, IACR Cryptol. ePrint Arch..
[4] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[5] N. J. A. Sloane,et al. Fast quantizing and decoding and algorithms for lattice quantizers and codes , 1982, IEEE Trans. Inf. Theory.
[6] Marcel Urner. Algebraic Number Theory And Code Design For Rayleigh Fading Channels , 2016 .
[7] I. Vaughan L. Clarkson,et al. An Algorithm to Compute the Nearest Point in the Lattice $A_{n}^*$ , 2008, IEEE Transactions on Information Theory.
[8] Ronald L. Rivest,et al. Introduction to Algorithms, third edition , 2009 .
[9] RegevOded,et al. On Ideal Lattices and Learning with Errors over Rings , 2013 .
[10] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[11] Daniele Micciancio,et al. A Deterministic Single Exponential Time Algorithm for Most Lattice Problems Based on Voronoi Cell Computations , 2013, SIAM J. Comput..
[12] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .
[13] A. Blokhuis. SPHERE PACKINGS, LATTICES AND GROUPS (Grundlehren der mathematischen Wissenschaften 290) , 1989 .
[14] I.V.L. Clarkson,et al. A linear-time nearest point algorithm for the lattice An* , 2008, 2008 International Symposium on Information Theory and Its Applications.
[15] László Babai,et al. On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..
[16] Daniel Dadush,et al. Short Paths on the Voronoi Graph and Closest Vector Problem with Preprocessing , 2014, SODA.
[17] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .
[18] N. J. A. Sloane,et al. Voronoi regions of lattices, second moments of polytopes, and quantization , 1982, IEEE Trans. Inf. Theory.
[19] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..