Determinants of the differential gating properties of Cav3.1 and Cav3.3 T-type channels: A role of domain IV?

[1]  D. Clapham,et al.  CACNA1H Mutations in Autism Spectrum Disorders* , 2006, Journal of Biological Chemistry.

[2]  Houman Khosravani,et al.  Voltage-gated calcium channels and idiopathic generalized epilepsies. , 2006, Physiological reviews.

[3]  Hee-Sup Shin,et al.  Bradycardia and Slowing of the Atrioventricular Conduction in Mice Lacking CaV3.1/&agr;1G T-Type Calcium Channels , 2006, Circulation research.

[4]  W Hamish Mehaffey,et al.  Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Alice Lam,et al.  Role of Domain IV/S4 outermost arginines in gating of T-type calcium channels , 2005, Pflügers Archiv.

[6]  Jung-Ha Lee,et al.  Transfer of β subunit regulation from high to low voltage‐gated Ca2+ channels , 2005 .

[7]  E. Perez-Reyes,et al.  Functional Characterization and Neuronal Modeling of the Effects of Childhood Absence Epilepsy Variants of CACNA1H, a T-Type Calcium Channel , 2005, The Journal of Neuroscience.

[8]  C. Bladen,et al.  Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy , 2005, Annals of neurology.

[9]  Olivier Poirot,et al.  Silencing of the Cav3.2 T‐type calcium channel gene in sensory neurons demonstrates its major role in nociception , 2005, The EMBO journal.

[10]  N. Klugbauer,et al.  Roles of Molecular Regions in Determining Differences between Voltage Dependence of Activation of CaV3.1 and CaV1.2 Calcium Channels* , 2004, Journal of Biological Chemistry.

[11]  Jung-Ha Lee,et al.  Multiple Structural Elements Contribute to the Slow Kinetics of the Cav3.3 T-type Channel* , 2004, Journal of Biological Chemistry.

[12]  I. Scheffer,et al.  Genetic variation of CACNA1H in idiopathic generalized epilepsy , 2004, Annals of neurology.

[13]  C. Altier,et al.  Gating Effects of Mutations in the Cav3.2 T-type Calcium Channel Associated with Childhood Absence Epilepsy* , 2004, Journal of Biological Chemistry.

[14]  G. Zamponi,et al.  Functional roles of cytoplasmic loops and pore lining transmembrane helices in the voltage‐dependent inactivation of HVA calcium channels , 2004, The Journal of physiology.

[15]  Chien-Chang Chen,et al.  Abnormal Coronary Function in Mice Deficient in α1H T-type Ca2+ Channels , 2003, Science.

[16]  P. Lory,et al.  Neuronal T-type α1H Calcium Channels Induce Neuritogenesis and Expression of High-Voltage-Activated Calcium Channels in the NG108–15 Cell Line , 2002, The Journal of Neuroscience.

[17]  Aaron M. Beedle,et al.  Inhibition of Transiently Expressed Low- and High-Voltage-Activated Calcium Channels by Trivalent Metal Cations , 2002, The Journal of Membrane Biology.

[18]  P. Lory,et al.  Specific contribution of human T‐type calcium channel isotypes (α1G, α1H and α1I) to neuronal excitability , 2002 .

[19]  N. Soldatov,et al.  Molecular Determinants of Voltage-dependent Slow Inactivation of the Ca2+ Channel* , 2002, The Journal of Biological Chemistry.

[20]  E. Perez-Reyes,et al.  Inactivation determinants in segment IIIS6 of Cav3.1 , 2001, The Journal of physiology.

[21]  G. Zamponi,et al.  Identification of Inactivation Determinants in the Domain IIS6 Region of High Voltage-activated Calcium Channels* , 2001, The Journal of Biological Chemistry.

[22]  Daesoo Kim,et al.  Lack of the Burst Firing of Thalamocortical Relay Neurons and Resistance to Absence Seizures in Mice Lacking α1G T-Type Ca2+ Channels , 2001, Neuron.

[23]  S. Hering,et al.  Amino Acids in Segment IVS6 and β-Subunit Interaction Support Distinct Conformational Changes during Cav2.1 Inactivation* , 2001, The Journal of Biological Chemistry.

[24]  D. Baillie,et al.  Molecular and Functional Characterization of a Family of Rat Brain T-type Calcium Channels* , 2001, The Journal of Biological Chemistry.

[25]  N. Klugbauer,et al.  The amino side of the C‐terminus determines fast inactivation of the T‐type calcium channel α1G , 2001, The Journal of physiology.

[26]  M. Morad,et al.  New Molecular Determinant for Inactivation of the Human L-Type α1C Ca2+ Channel , 2000, The Journal of Membrane Biology.

[27]  G. Zamponi,et al.  Fast Inactivation of Voltage-dependent Calcium Channels , 2000, The Journal of Biological Chemistry.

[28]  G. Mennessier,et al.  Specific Properties of T-type Calcium Channels Generated by the Human α1I Subunit* , 2000, The Journal of Biological Chemistry.

[29]  G. Mennessier,et al.  Molecular and Functional Properties of the Human α1G Subunit That Forms T-type Calcium Channels* , 2000, The Journal of Biological Chemistry.

[30]  G. Zamponi,et al.  Multiple Structural Domains Contribute to Voltage-dependent Inactivation of Rat Brain α1E Calcium Channels* , 1999, Journal of Biological Chemistry.

[31]  Edmund M. Talley,et al.  Differential Distribution of Three Members of a Gene Family Encoding Low Voltage-Activated (T-Type) Calcium Channels , 1999, The Journal of Neuroscience.

[32]  Jung-Ha Lee,et al.  Cloning and Expression of a Novel Member of the Low Voltage-Activated T-Type Calcium Channel Family , 1999, The Journal of Neuroscience.

[33]  Y. Zhang,et al.  Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. , 1998, Circulation research.

[34]  Jung-Ha Lee,et al.  Molecular characterization of a neuronal low-voltage-activated T-type calcium channel , 1998, Nature.

[35]  R. Kraus,et al.  Molecular mechanism of use-dependent calcium channel block by phenylalkylamines: role of inactivation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  W. Catterall,et al.  Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel α1A subunit , 1997 .

[37]  H. Glossmann,et al.  Chimeric L‐type Ca2+ channels expressed in Xenopus laevis oocytes reveal role of repeats III and IV in activation gating. , 1995, The Journal of physiology.

[38]  Xinru Wang,et al.  Fenvalerate modifies T-type Ca2+ channels in mouse spermatogenic cells. , 2006, Reproductive toxicology.

[39]  G. Bernatchez,et al.  Molecular determinants of inactivation within the I-II linker of alpha1E (CaV2.3) calcium channels. , 2001, Biophysical journal.