FAST COMMUNICATION A DYNAMIC MODEL OF OPEN VESICLES IN FLUIDS

A hydrodynamic model of open vesicles in solution is presented to study the enlarge- ment and shrinkage of a pore in a biological lipid membrane. The vesicle is modeled by diffusive interfaces. Transport equations permitting consistent treatment of the pore and pore rim are intro- duced. Dynamic simulations implemented by the finite difference method show the evolution of a pore in stretched vesicles. Simulation results include direct visualization of the membrane shape, water motion, and dissipation of energy. Comparison is made with data obtained from microscopy experiments.

[1]  C. Liu,et al.  Diffuse interface methods for multiple phase materials: an energetic variational approach , 2014, 1402.5375.

[2]  Petia M. Vlahovska,et al.  Dynamics of a non-spherical microcapsule with incompressible interface in shear flow , 2011, Journal of Fluid Mechanics.

[3]  Petia M. Vlahovska,et al.  Dynamics of a compound vesicle in shear flow. , 2011, Physical review letters.

[4]  R. Dimova,et al.  A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition. , 2010, Biophysical journal.

[5]  Q. Du,et al.  Energetic variational approaches in modeling vesicle and fluid interactions , 2009 .

[6]  Qiang Du,et al.  ANALYSIS OF A PHASE FIELD NAVIER-STOKES VESICLE-FLUID INTERACTION MODEL , 2007 .

[7]  Axel Voigt,et al.  Surface Phase Separation and Flow in a Simple Model of Multicomponent Drops and Vesicles , 2007 .

[8]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of mathematical biology.

[9]  W. Briels,et al.  Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations. , 2006, The Journal of chemical physics.

[10]  Junseok Kim,et al.  Phase field modeling and simulation of three-phase flows , 2005 .

[11]  Qiang Du,et al.  A phase field formulation of the Willmore problem , 2005 .

[12]  J. Zimmerberg,et al.  Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. , 2005, Biophysical journal.

[13]  F. Brochard-Wyart,et al.  Membrane tensiometer for heavy giant vesicles , 2004, The European physical journal. E, Soft matter.

[14]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[15]  Y. Levin,et al.  Pore dynamics of osmotically stressed vesicles , 2003, cond-mat/0311350.

[16]  Olivier Sandre,et al.  Cascades of transient pores in giant vesicles: line tension and transport. , 2003, Biophysical journal.

[17]  P. Gennes,et al.  Transient pores in stretched vesicles: role of leak-out , 2000, Physica A: Statistical Mechanics and its Applications.

[18]  Gunduz Caginalp,et al.  Convergence of the phase field model to its sharp interface limits , 1998, European Journal of Applied Mathematics.

[19]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[20]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[21]  W. Marsden I and J , 2012 .

[22]  Axel Voigt,et al.  Dynamics of multicomponent vesicles in a viscous fluid , 2010, J. Comput. Phys..

[23]  Roger On a modified conjecture of De , 2005 .

[24]  Roger Moser,et al.  A Higher Order Asymptotic Problem Related to Phase Transitions , 2005, SIAM J. Math. Anal..

[25]  P. Nelson,et al.  Dynamically-Stabilized Pores in Bilayer Membranes , 1996 .

[26]  H. Soner,et al.  MOTION BY MEAN CURVATURE , 1991 .

[27]  Philippe G. Ciarlet,et al.  Handbook of Numerical Analysis , 1976 .

[28]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.