Logical Filtering

Filtering denotes any method whereby an agent updates its belief state—its knowledge of the state of the world—from a sequence of actions and observations. In logical filtering, the belief state is a logical formula describing possible world states and the agent has a (possibly nondeterministic) logical model of its environment and sensors. This paper presents efficient logical filtering algorithms that maintain a compact belief state representation indefinitely, for a broad range of environment classes including nondeterministic, partially observable STRIPS environments and environments in which actions permute the state space. Efficient filtering is also possible when the belief state is represented using prime implicates, or when it is approximated by a logically weaker formula. The properties of domains that we identify can be used to launch further investigation into efficient projection, execution monitoring, planning, diagnosis, real-time control and reinforcement learning in partially observable domains.

[1]  J. Meigs,et al.  WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.

[2]  William Craig,et al.  Linear reasoning. A new form of the Herbrand-Gentzen theorem , 1957, Journal of Symbolic Logic.

[3]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[4]  J. Davenport Editor , 1960 .

[5]  Richard Fikes,et al.  Learning and Executing Generalized Robot Plans , 1993, Artif. Intell..

[6]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[7]  H. Chandler Database , 1985 .

[8]  Gabriel M. Kuper,et al.  Updating Logical Databases , 1986, Adv. Comput. Res..

[9]  Ravi B. Boppana,et al.  The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[10]  P. Pandurang Nayak,et al.  A Model-Based Approach to Reactive Self-Configuring Systems , 1996, AAAI/IAAI, Vol. 2.

[11]  Bart Selman,et al.  Encoding Plans in Propositional Logic , 1996, KR.

[12]  Hector J. Levesque,et al.  GOLOG: A Logic Programming Language for Dynamic Domains , 1997, J. Log. Program..

[13]  Fangzhen Lin,et al.  How to Progress a Database , 1997, Artif. Intell..

[14]  Peter Baumgartner,et al.  Computing Answers with Model Elimination , 1997, Artif. Intell..

[15]  Paolo Liberatore,et al.  The Complexity of the Language A , 1997, Electron. Trans. Artif. Intell..

[16]  Sheila A. McIlraith Explanatory Diagnosis: Conjecturing Actions to Explain Observations , 1998, KR.

[17]  Patrick Doherty,et al.  The PMA and relativizing change for action update , 1998 .

[18]  Vladik Kreinovich,et al.  Computational Complexity of Planning and Approximate Planning in Presence of Incompleteness , 1999, IJCAI.

[19]  Enrico Giunchiglia,et al.  Planning as Satisfiability in Nondeterministic Domains , 2000, AAAI/IAAI.

[20]  Claus Skaanning Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence : UAI'00 , 2000 .

[21]  Marco Roveri,et al.  Conformant Planning via Symbolic Model Checking , 2000, J. Artif. Intell. Res..

[22]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[23]  K. Iwanuma,et al.  Completeness of Pruning Methods for Consequence Finding Procedure SOL , 2000 .

[24]  Laurent Simon,et al.  Efficient Consequence Finding , 2001, IJCAI.

[25]  Tran Cao Son,et al.  Formalizing sensing actions A transition function based approach , 2001, Artif. Intell..

[26]  John G. Gibbons Knowledge in Action , 2001 .

[27]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[28]  Alex M. Andrew,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2002 .

[29]  Eyal Amir Planning with Nondeterministic Actions and Sensing , 2002 .