Solving Equations of Random Convex Functions via Anchored Regression

[1]  Tom Goldstein,et al.  Convex Phase Retrieval without Lifting via PhaseMax , 2017, ICML.

[2]  Mahdi Soltanolkotabi,et al.  Learning ReLUs via Gradient Descent , 2017, NIPS.

[3]  Vladislav Voroninski,et al.  Corruption Robust Phase Retrieval via Linear Programming , 2016, ArXiv.

[4]  Vladislav Voroninski,et al.  Compressed Sensing from Phaseless Gaussian Measurements via Linear Programming in the Natural Parameter Space , 2016, ArXiv.

[5]  Vladislav Voroninski,et al.  An Elementary Proof of Convex Phase Retrieval in the Natural Parameter Space via the Linear Program PhaseMax , 2016, ArXiv.

[6]  Justin Romberg,et al.  Phase Retrieval Meets Statistical Learning Theory: A Flexible Convex Relaxation , 2016, AISTATS.

[7]  Shahar Mendelson,et al.  Regularization and the small-ball method II: complexity dependent error rates , 2016, J. Mach. Learn. Res..

[8]  S. Mendelson,et al.  Regularization and the small-ball method I: sparse recovery , 2016, 1601.05584.

[9]  Yaniv Plan,et al.  The Generalized Lasso With Non-Linear Observations , 2015, IEEE Transactions on Information Theory.

[10]  Thomas Strohmer,et al.  Self-calibration and biconvex compressive sensing , 2015, ArXiv.

[11]  S. Mendelson Learning without concentration for general loss functions , 2014, 1410.3192.

[12]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[13]  J. Tropp Convex recovery of a structured signal from independent random linear measurements , 2014, ArXiv.

[14]  Tengyao Wang,et al.  A useful variant of the Davis--Kahan theorem for statisticians , 2014, 1405.0680.

[15]  Y. Plan,et al.  High-dimensional estimation with geometric constraints , 2014, 1404.3749.

[16]  Shahar Mendelson,et al.  Learning without Concentration , 2014, COLT.

[17]  V. Koltchinskii,et al.  Bounding the smallest singular value of a random matrix without concentration , 2013, 1312.3580.

[18]  Massimo Fornasier,et al.  Quasi-linear Compressed Sensing , 2013, Multiscale Model. Simul..

[19]  Philippe Rigollet,et al.  Complexity Theoretic Lower Bounds for Sparse Principal Component Detection , 2013, COLT.

[20]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[21]  Yonina C. Eldar,et al.  Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.

[22]  Justin K. Romberg,et al.  Blind Deconvolution Using Convex Programming , 2012, IEEE Transactions on Information Theory.

[23]  Xiaodong Li,et al.  Solving Quadratic Equations via PhaseLift When There Are About as Many Equations as Unknowns , 2012, Found. Comput. Math..

[24]  Thomas Blumensath,et al.  Compressed Sensing With Nonlinear Observations and Related Nonlinear Optimization Problems , 2012, IEEE Transactions on Information Theory.

[25]  Yonina C. Eldar,et al.  Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms , 2012, SIAM J. Optim..

[26]  Bhiksha Raj,et al.  Greedy sparsity-constrained optimization , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[27]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[28]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[29]  I. Johnstone,et al.  On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.

[30]  S. Geer,et al.  Multivariate log-concave distributions as a nearly parametric model , 2008, Am. Math. Mon..

[31]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[32]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[33]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[34]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[35]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[36]  R. Paley,et al.  A note on analytic functions in the unit circle , 1932, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  Soumendu Sundar Mukherjee,et al.  Weak convergence and empirical processes , 2019 .

[38]  J. Romberg,et al.  A flexible convex relaxation for phase retrieval , 2017 .

[39]  Alon Gonen Understanding Machine Learning From Theory to Algorithms 1st Edition Shwartz Solutions Manual , 2015 .

[40]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[41]  Wenbo V. Li,et al.  Gaussian integrals involving absolute value functions , 2009 .

[42]  Arkadi Nemirovski,et al.  Topics in Non-Parametric Statistics , 2000 .

[43]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .