Unscented Filtering for Spacecraft Attitude Estimation

A new spacecraft attitude estimation approach based on the unscented filter is derived. For nonlinear systems the unscented filter uses a carefully selected set of sample points to map the probability distribution more accurately than the linearization of the standard extended Kalman filter, leading to faster convergence from inaccurate initial conditions in attitude estimation problems. The filter formulation is based on standard attitude-vector measurements using a gyro-based model for attitude propagation. The global attitude parameterization is given by a quaternion, whereas a generalized three-dimensional attitude representation is used to define the local attitude error. A multiplicative quaternion-error approach is derived from the local attitude error, which guarantees that quaternion normalization is maintained in the filter. Simulation results indicate that the unscented filter is more robust than the extended Kalman filter under realistic initial attitude-error conditions.

[1]  J. L. Farrell,et al.  Attitude determination by kalman filtering , 1970 .

[2]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[3]  R. Farrenkopf Analytic Steady-State Accuracy Solutions for Two Common Spacecraft Attitude Estimators , 1978 .

[4]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[5]  B. Anderson,et al.  Digital control of dynamic systems , 1981, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[6]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  Maciejowsk Multivariable Feedback Design , 1989 .

[9]  Robert A. Langel,et al.  International Geomagnetic Reference Field , 1992 .

[10]  M. Shuster A survey of attitude representation , 1993 .

[11]  John L. Crassidis,et al.  Contingency designs for attitude determination of TRMM , 1995 .

[12]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[13]  J. Junkins,et al.  Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters , 1996 .

[14]  Samuel D Lindenbaum Matrix and Vector Algebra in N-Dimensional Space , 1996 .

[15]  F. Markley,et al.  Attitude Estimation Using Modified Rodrigues Parameters , 1996 .

[16]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[17]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[18]  S. Macmillan,et al.  International Geomagnetic Reference Field—the eighth generation , 2000 .

[19]  M. Psiaki Attitude-Determination Filtering via Extended Quaternion Estimation , 2000 .

[20]  F. Markley,et al.  Attitude Representations for Kalman Filtering , 2001 .

[21]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[22]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[23]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .

[24]  F. Markley Attitude Error Representations for Kalman Filtering , 2003 .

[25]  Pólo de Coimbra Tracking and Data Association Using Data from a LRF , 2005 .