Wirelessly powering miniature implants for optogenetic stimulation

Conventional methods for in vivo optogenetic stimulation require optical fibers or mounted prosthesis. We present an approach for wirelessly powering implantable stimulators using electromagnetic midfield. By exploiting the properties of the midfield, we demonstrate the ability to generate high intensity light pulses in a freely moving animal.

[1]  William C. Brown,et al.  The History of Power Transmission by Radio Waves , 1984 .

[2]  R. W. Lau,et al.  The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. , 1996, Physics in medicine and biology.

[3]  Kai Chang,et al.  Circularly polarised truncated-corner square patch microstrip rectenna for wireless power transmission , 2000 .

[4]  L. E. Anderson,et al.  Genotoxic Potential of 1.6 GHz Wireless Communication Signal: In Vivo Two-Year Bioassay , 2003, Radiation research.

[5]  G. Feng,et al.  Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits , 2006, The Journal of Neuroscience.

[6]  Feng Zhang,et al.  An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology , 2007, Journal of neural engineering.

[7]  M. Soljačić,et al.  Wireless Power Transfer via Strongly Coupled Magnetic Resonances , 2007, Science.

[8]  Scott K. Arfin,et al.  Wireless neural stimulation in freely behaving small animals. , 2009, Journal of neurophysiology.

[9]  K. Deisseroth,et al.  Bi-stable neural state switches , 2009, Nature Neuroscience.

[10]  Aristides B. Arrenberg,et al.  Optogenetic Control of Cardiac Function , 2010, Science.

[11]  T. Meng,et al.  Optimal Frequency for Wireless Power Transmission Into Dispersive Tissue , 2010, IEEE Transactions on Antennas and Propagation.

[12]  P. Lledo,et al.  Using affordable LED arrays for photo-stimulation of neurons. , 2011, Journal of visualized experiments : JoVE.

[13]  S. Fan,et al.  Wireless energy transfer with the presence of metallic planes , 2011 .

[14]  Alex Rodriguez,et al.  A wirelessly powered and controlled device for optical neural control of freely-behaving animals , 2011, Journal of neural engineering.

[15]  J. S. Ho,et al.  Wireless power transfer to a cardiac implant , 2012 .

[16]  Steffen B. E. Wolff,et al.  A polymer-based neural microimplant for optogenetic applications: design and first in vivo study. , 2013, Lab on a chip.

[17]  A. Poon,et al.  Midfield wireless powering of subwavelength autonomous devices. , 2013, Physical review letters.