On-Chip Infrared Spectroscopic Sensing: Redefining the Benefits of Scaling

Infrared (IR) spectroscopy is widely recognized as a gold standard technique for chemical analysis. Recent strides in photonic integration technologies offer a promising route towards enabling miniaturized, rugged platforms for IR spectroscopic analysis. Here we show that simple size scaling by replacing bulky discrete optical elements used in conventional IR spectroscopy with their on-chip counterparts is not a viable route for on-chip infrared spectroscopic sensing, as it cripples the system performance due to the limited optical path length accessible on a chip. In this context, we discuss two novel photonic sensor designs uniquely suited for microphotonic integration. We leverage strong optical and thermal confinement in judiciously designed microcavities to circumvent the thermal diffusion and optical diffraction limits in conventional photothermal sensors and achieve parts-per-billion level gas molecule limit of detection. In the second example, an on-chip spectrometer design with Fellgett's advantage is proposed for the first time. The design enables sub-nm spectral resolution on a millimeter-sized, fully packaged chip without mechanical moving parts.

[1]  D. Englund,et al.  A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array , 2012 .

[2]  J N McMullin,et al.  Chip-scale spectrometry based on tapered hollow Bragg waveguides. , 2009, Optics express.

[3]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[4]  G. Lo,et al.  A compact and low loss Y-junction for submicron silicon waveguide. , 2013, Optics express.

[5]  Wei Zhang,et al.  Low-loss photonic device in Ge-Sb-S chalcogenide glass. , 2016, Optics letters.

[6]  Juejun Hu,et al.  Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. , 2010, Optics express.

[7]  Noel H. Wan,et al.  High-resolution optical spectroscopy using multimode interference in a compact tapered fibre , 2015, Nature Communications.

[8]  N. Pitsianis,et al.  Static two-dimensional aperture coding for multimodal, multiplex spectroscopy. , 2006, Applied optics.

[9]  Scott R. Davis,et al.  Compact liquid crystal waveguide based fourier transform spectrometer for in-situ and remote gas and chemical sensing , 2009, International Conference on Optical Instruments and Technology.

[10]  M. Lipson,et al.  First-principle derivation of gain in high-index-contrast waveguides. , 2008, Optics express.

[11]  Michal Lipson,et al.  On-chip spectrophotometry for bioanalysis using microring resonators , 2011, Biomedical optics express.

[12]  M. Golay Multi-slit spectrometry. , 1949, Journal of the Optical Society of America.

[13]  P. Royer,et al.  Wavelength-scale stationary-wave integrated Fourier-transform spectrometry , 2007, 0708.0272.

[14]  K. P. Birch,et al.  An Updated Edln Equation for the Refractive Index of Air , 1993 .

[15]  Jean-Luc Adam,et al.  Preparation of optical fibers based on Ge–Sb–S glass system , 2009 .

[16]  Ali Adibi,et al.  Multimodal multiplex spectroscopy using photonic crystals. , 2003, Optics express.

[17]  Donald R. Herriott,et al.  Folded Optical Delay Lines , 1965 .

[18]  D. Van Thourhout,et al.  Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Manfred Hammer,et al.  Planar prism spectrometer based on adiabatically connected waveguiding slabs , 2016 .

[20]  R Glenn Sellar,et al.  Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer. , 2005, Applied optics.

[21]  Hongtao Lin,et al.  Heterogeneously integrated MIR silicon photonics , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[22]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[23]  T. Johnson,et al.  Gas-Phase Databases for Quantitative Infrared Spectroscopy , 2004, Applied spectroscopy.

[24]  Pao Tai Lin,et al.  Mid-infrared materials and devices on a Si platform for optical sensing , 2014, Science and technology of advanced materials.

[25]  Arnan Mitchell,et al.  Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides. , 2015, Optics express.

[26]  M. Bawendi,et al.  A colloidal quantum dot spectrometer , 2015, Nature.

[27]  S. Popoff,et al.  Using a multimode fiber as a high resolution, low loss spectrometer , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[28]  Z. Jiang,et al.  Infrared Spectroscopy , 2022 .

[29]  M. Lipson,et al.  Cavity-enhanced on-chip absorption spectroscopy using microring resonators. , 2008, Optics express.

[30]  J. Dell,et al.  MEMS-based microspectrometer technologies for NIR and MIR wavelengths , 2009 .

[31]  Wim Bogaerts,et al.  Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited] , 2015 .

[32]  Fei Zhao,et al.  2×2 multimode interference coupler with low loss using 248 nm photolithography , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[33]  Y. Vlasov,et al.  High Resolution On-chip Spectroscopy Based on Miniaturized Microdonut Resonators References and Links , 2022 .

[34]  A. Leinse,et al.  Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. , 2011, Optics express.

[35]  Hong Cai,et al.  Nano-silicon-photonic Fourier Transform Infrared (FTIR) spectrometer-on-a-chip , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[36]  Joris Van Campenhout,et al.  Silicon-based heterogeneous photonic integrated circuits for the mid-infrared , 2013 .

[37]  Stefano Cabrini,et al.  Digital optical spectrometer-on-chip , 2009 .

[38]  Brandon Redding,et al.  All-fiber spectrometer based on speckle pattern reconstruction. , 2013, Optics express.

[39]  Siegfried Janz,et al.  Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers. , 2007, Optics express.

[40]  H. Cao,et al.  Compact spectrometer based on a disordered photonic chip , 2013, Nature Photonics.

[41]  R. J. Lovell,et al.  Infrared spectrum of hydrogen fluoride: line positions and line shapes. Part II. Treatment of data and results , 1962 .

[42]  Jinzhong Yu,et al.  High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. , 2012, Optics express.

[43]  Anant Agarwal,et al.  Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses , 2009 .

[44]  Hongtao Lin,et al.  Double resonance 1-D glass-on-silicon photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: Theory and design , 2012, The 9th International Conference on Group IV Photonics (GFP).

[45]  ダットナー、ヨナサン,et al.  Fully integrated complementary metal oxide semiconductor (cmos) Fourier transform infrared (FTIR) spectrometers and Raman spectrometers , 2012 .

[46]  Marko Loncar,et al.  Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators. , 2015, Optics express.